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Learning Outcomes 
• Understand and use text files to store and 
load data 

• Develop simple grid-based simulations 
using 2-dimensional arrays: fire modelling, 
Game of Life 

• Apply list comprehensions to simplify code 
• Experiment with parameters to investigate 
how they alter the outcomes of simulations 
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The story so far… 
• We've gone from working with single 
variables… 
…through lists and strings… 
    … then one dimensional arrays… 
         … and 2-D arrays … 
              … and N-D arrays … 

• However, every piece of data we have used 
has been entered or generated within our 
programs.  
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The story so far… 

• EXCEPT… the prettyface.py critter 
• This was read in from a file within scipy.misc 
• We have also saved our plots as files to use 
later 

• Files can be read from (used as input) or 
written to (output) 

• We'll learn how to use them this week 
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The story so far… 
• Also, we have been using arrays to 
represent values 
         growtharray.py for population values 

• We can view an array as a grid, 
representing 2D or 3D space in the real (or 
imaginary) world 

• Grids are an abstraction of the world, with 
each cell representing a 2D or 3D space 

• We'll look at a few examples this week 
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FILES 
Fundamentals of Programming 
Lecture 5 
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Python input and output 
• So far we've been printing to the screen and 
reading from the keyboard… 

print('What... is your name?') 
name = input()      
# It is 'Arthur', King of the Britons.  
print('What... is your quest?') 
quest = input()      
# To seek the Holy Grail.  
print('What... is the air-speed velocity of 
an unladen swallow?') 
velocity = input()    
# What do you mean? An African or European 
swallow?  
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Files 
• Files allow us to have persistent data – 
data that stays after our program has run 

• Files are accessed via their name (and 
directory) 

• Some files hold text (python code, csv 
files) and others may hold binary data (e.g. 
images) 

• When we open a file, we can indicate if we 
want to read, write or append to the file 
• default is 'r' - read 
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Working with Files 
• Python provides access to file functions and 
methods through the file object 

• To create a file object and have access to a 
file, we need to use the open() method: 

spamfile = open('spam.txt') 
# opens text file for reading 
csvfile = open('newdata.csv', w)  
# creates a new csv/text file for  
# writing, overwrites it if exists 
datafile = open('olddata.dat', ab) 
# opens existing binary file and appends  
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File modes 
Read Write Append Description 

r w a Read/write/append text 
files 

rb wb ab Read/write/append binary 
files 

r+ w+ a+ Opens for reading and 
writing 

rb+ wb+ ab+ Opens for reading and 
writing binary files 

file pointer 
at 
beginning 

file pointer 
at 
beginning 
 

file pointer 
at end of 
file 

Note: you can accidentally 
delete a file by opening it in 
the wrong mode! 
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File locations 
• To specify a path to the file, add the path to 
the name the file 

• If you don’t specify a path, Python will look 
for the file in the current directory 

• path = '/home/12345678/FOP/spam.txt' 
• spamfile = open(path, 'r') 
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Closing Files 
• A bit like ejecting a USB – we need to safely 
close our files 

• Always call close() after you have finished 
working with files 

• Closing flushes any unwritten information and 
closes the file object 
 
spamfile.close() 
csvfile.close() 
datafile.close() 
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Reading files 
• Python has three read methods to work 
with open files 
pythonfile.read() 
# reads entire contents of file 
pythonfile.readline() 
# reads one line of the file  
#(to next newline) 
pythonfile.readlines() 
# reads entire contents of file as 
# a list, one line per element 
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Example 
names.py 
 
names = open('names.txt') 
thischunk = names.read() 
print(thischunk) 
names.close() 
 
names = open('names.txt') 
thischunk = names.readline() 
print(thischunk) 
names.close() 
 
names = open('names.txt') 
thischunk = 
names.readlines() 
print(thischunk) 
names.close() 

OUTPUT 
 
Eric 
John 
Terry 
Graham 
Michael 
 
Eric 
 
 
 
['Eric\n', 'John\n', 'Terry
\n', 'Graham\n', 'Michael
\n'] 
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Writing to files 
• Use the returned file object to write to the file 
 
# Open a file 
fo = open("grail.txt", "w") 
fo.write( "Come back here and I'll bite your 
legs off! \nBlack Knight\n"); 
# Close opened file 
fo.close() 
grail.txt: 
 
Come back here and I'll bite your legs off! 
Black Knight 
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Files are like arrays 
• Our text files are very similar to 1D arrays 
• They can be broken up by newline characters, 
but are really just long strings 

• You decide how you want to read and write 
them to suit the problem you are working on 

• Python keeps track of where it is in the file 
with a pointer      that moves along with each 
read or write 
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CSV Files 
•  It's common to receive data as comma separated values (csv) 
•  There is a csv package, we'll look at that in a few weeks 
•  For now, read a csv file as text, then split on the commas: 
namesfile = open('names.csv') 
line = namesfile.readline() 
linelist = line.split(',') 
print(linelist) 
 
•  To write csv, convert the list to a comma separated string using 

the join() method: 
newnames = open('names3.csv', 'w') 
newline = ','.join(linelist) 
print(newline) 
newnames.write(newline) 
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Pythonic file handling 
• It is good practice to use the with keyword 
when dealing with file objects.  

• This has the advantage that the file is properly 
closed after its suite finishes, even if an 
exception is raised on the way.  

• It is also much shorter than the other 
approach 

with open('workfile', 'r') as f:  
    read_data = f.read() 
. 
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Binary Files 
• We have focused on text files  
• Using binary files is beyond the scope of this course 
• With text files, data is stored as characters 
• Advantage: binary files store the data as binary 
which is much more compact 

• Disadvantage: we can't read them directly and are 
unlikely to be able to fix it if is corrupted 

• The files look a  
bit like this when  
you open them 

• See these docs 
for more information: 
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GRIDS 
Fundamentals of Programming 
Lecture 5 
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Grid Decomposition 
• This approach breaks up a space into a 
multidimensional grid 

• Each cell on the grid has one or more 
associated values  

• The cells impact on each other over time 
• General algorithm: 
        For each time_step  
            For each grid dimension  
                For each cell 
                    Calculate the next value 
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Neighbourhoods 
•  In a 2-D grid, the von Neumann neighbourhood of a 
site is the set of cells directly North, South, East and 
West or the site, and the site itself 

• The Moore neigbourhood adds NE, NW, SE and SW 
• The four or eight cells, not including the site, are the 
site's neighbours 
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Heat diffusion 
• In Practical 5, we will work with a grid-
based program, heat.py 

• The program is a simple model of heat 
diffusion 

• This model is based on Newton's law of 
heating and cooling 
• "Rate of change of temperature of an object is 
proportional to the difference between the 
objects' temperature and that of its 
surroundings" (Shiflet & Shiflet) 
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Heat diffusion formula 
• We use a temporary 
array (b2) to store 
values for the next 
iteration 

• The next (row,col) 
element b2[r,c] will be 
the result of the 3x3 
calculation 

• We do this for every 
row and column of the 
array 

(ROW – 1, 
COL – 1) 
 * 0.1 

(ROW – 1, 
COL)  
* 0.1 

(ROW – 1, 
COL + 1)  
* 0.1 

(ROW, 
COL – 1)  
* 0.1 

(ROW, 
COL)  
* 0.2 

(ROW, 
COL + 1)  
* 0.1 

(ROW + 1, 
COL – 1)  
* 0.1 

(ROW + 1, 
COL)  
* 0.1 

(ROW + 1, 
COL + 1) 
* 0.1 
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(ROW – 1, 
COL – 1) 
 * 0.1 

(ROW – 1, 
COL)  
* 0.1 

(ROW – 1, 
COL + 1)  
* 0.1 

(ROW, COL 
– 1)  
* 0.1 

(ROW, 
COL)  
* 0.2 

(ROW, COL 
+ 1)  
* 0.1 

(ROW + 1, 
COL – 1)  
* 0.1 

(ROW + 1, 
COL)  
* 0.1 

(ROW + 1, 
COL + 1) 
* 0.1 

b2[r,c] 



heat.py 
#  
# heat.py  
#  
import matplotlib.pyplot as plt  
import numpy as np  
size = 10  
b = np.zeros((size,size))  
# Create heat source  
for i in range(size):  
    b[i,0] = 10  
print('\nHEAT DIFFUSION SIMULATION\n') 
print('Initial array...')  
print(b)  
# Temp array for storing calculations  
b2 = np.zeros((size,size)) 
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heat.py 
# Calculate heat diffusion 
for timestep in range(5): 
    for r in range(1, size-1): 
        for c in range (1, size-1 ): 
            b2[r,c] = (b[r-1,c-1]*0.1 + b[r-1,c]*0.1                      
                      + b[r-1,c+1]*0.1 + b[r,c-1]*0.1   
                      + b[r,c]*0.2 + b[r,c+1]*0.1 
                      + b[r+1,c-1]*0.1 + b[r+1,c]*0.1  
                      + b[r+1,c+1]*0.1) 
    for i in range(size): 
        b2[i,0] = 10 
    b = b2.copy() 
plt.title('Heat Diffusion Simulation') 
plt.imshow(b2, cmap=plt.cm.hot) 
plt.colorbar() 
plt.show() 
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heat.py 
# Calculate heat diffusion 
for timestep in range(5): 
    for r in range(1, size-1): 
        for c in range (1, size-1 ): 
            b2[r,c] = (b[r-1,c-1]*0.1 + b[r-1,c]*0.1                      
                      + b[r-1,c+1]*0.1 + b[r,c-1]*0.1   
                      + b[r,c]*0.2 + b[r,c+1]*0.1 
                      + b[r+1,c-1]*0.1 + b[r+1,c]*0.1  
                      + b[r+1,c+1]*0.1) 
    for i in range(size): 
        b2[i,0] = 10 
    b = b2.copy() 
plt.title('Heat Diffusion Simulation') 
plt.imshow(b2, cmap=plt.cm.hot, interpolation='bilinear') 
plt.colorbar() 
plt.show() 
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Fireplan 
• Another application of grid  
decomposition is fire modelling 

• Each cell of the grid can include  
a value for fuel/vegetation, slope,  
how recently it's been burnt,  
moisture etc 

• Putting these together in a calculation can help 
predict the movement of a fire 

• Retired Curtin lecturer Steve Kessell 
commercialised a product FirePlan for this purpose 

• We will do a simplifed version in the pracs 
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Game of Life 
• The Game of Life was invented in 1970 by 
the British mathematician John Horton 
Conway 

• The Game of Life was Conway’s way of 
simplifying von Neumann’s ideas 

• It is the best-known example of a cellular 
automaton which is any system in which 
rules are applied to cells and their 
neighbours in a regular grid 
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Game of Life - Rules 
The game is designed around the following rules: 
 
1.  Any live cell with fewer than two live neighbors 

dies, as if caused by underpopulation 
2.  Any live cell with more than three live neighbors 

dies, as if by overcrowding 
 
3.  Any live cell with two or three live neighbors lives 

on to the next generation 

4.  Any dead cell with exactly three live neighbors 
becomes a live cell. 
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Image Filters 
• Many image processing techniques are based on 
small 2-D filters 

• scikit-image provides these routines in Python 
• They are making your plots pretty! 
• To use a filter through scikit-image: 
 
from skimage import data, io, filters  
image = data.coins()  
# ... or any other NumPy array!  
edges = filters.sobel(image)  
io.imshow(edges)  
io.show() 

Fundamentals_Lecture3 32 



EXAMPLES 
Fundamentals of Programming 
Lecture 5 
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Computational Fluid Dynamics 
• CFD is the use of applied 
mathematics, physics and 
computational software to visualize 
how fluids  
(gases or liquids) flow  
and how fluids affect  
objects as they flow past.  

• CFD is based on 
Navier–Stokes equations. These 
equations describe how velocity, 
pressure, temperature and density 
of a moving fluid are related. 
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Climate models 
• Some of the biggest  
and most complex  
computer models 

• Made up of a 3-D grid with many, many 
variables being tracked and calculated 

• We'll look at an online description of climate 
models:  
   
https://koshland-science-museum.org/explore-the-
science/interactives/how-do-climate-models-work  
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Weather Forecasting 
• Similar to climate modelling,  
but focussing on near  
predictions and local detail 

• Allow for predictions and warnings as with 
Hurrican Harvey recently in the US 

• NASA has a range of models for tracking 
hurricanes and wild weather: 
https://pmm.nasa.gov/articles/how-does-nasa-study-
hurricanes 

• Accurate predictions are vital for disaster 
planning 
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LIST COMPREHENSIONS 
Fundamentals of Programming 
Lecture 5 
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List Comprehensions 
• A Pythonic approach to a frequent operation 
• Turns a multi-line for-loop into a one liner 
• Basic syntax: 
[transformation iteration filter]   OR
[expression for item in list if conditional]

• Equivalent to: 
    for item in list:
        if conditional:
            expression
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Unconditional list comprehensions 
numbers = [1, 2, 3, 4, 5]

doubled_numbers = [] 
for n in numbers:  
    doubled_numbers.append(n * 2)

doubled_numbers = [n * 2 for n in numbers]

Fundamentals_Lecture5 39 



Conditional list comprehensions 
numbers = [1, 2, 3, 4, 5]

doubled_odds = [] 
for n in numbers:
    if n % 2 == 1: 
    doubled_odds.append(n * 2) 

doubled_odds = [n * 2 for n in numbers 
                if n % 2 == 1] 
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Practical 5: heatsource.py 
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# create heat source
hlist = []
fileobj = open('heatsource.csv','r')
for line in fileobj:
    line_s = line.strip()
    ints = [int(x) for x in line_s.split(',')]
    hlist.append(ints)
fileobj.close()

ints = []
for x in line_s.split(','):
    ints.append(int(x))



Practical 5: list of squares 
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# create list of first 10 square numbers
squares = []
for s in range(1, 11):
    squares.append(s * s)

numbers = list(range(1, 11))

squares = [s * s for s in numbers]

squares = [s * s for s in range(1, 11)]

print(numbers)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]



More examples: 
list1 = [3,4,5]
multiplied = [item*3 for item in list1]
print(multiplied)

[9,12,15]

def double(x):
    return x*2

doubled = [double(x) for x in range(10)]

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
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More examples: 
fname = ["Arthur","King","Of","The","Britons"]
initials = [word[0] for word in fullname]
print(initials)

['A', 'K', 'O', 'T', 'B']

lowered = [x.lower() for x in ["F","O","P"] ]
print(lowered)

['f', 'o', 'p']
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Summary 
• We've looked at how we can use text files to 
store and load data 

• We've explored and implemented simple grid-
based simulations using 2-dimensional arrays: 
fire modelling, Game of Life 

• We've seen how to apply list comprehensions 
to simplify code 

• In the practicals we will: 
• Experiment with parameters to investigate how they 

alter the outcomes of simulations 
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Practical Sessions 
• This week we will explore the heat diffusion 
simulation 

• We will access and explore grid-based 
programs: 
•  fireplan – modelling the movement of fire 
• game of life – modelling a population over time 

• We will also explore reading from and 
saving to files, and using list 
comprehensions 
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Assessments 
• The next assessment will be held during 
your assigned practical this week (Prac 5) 

• It will be a short practical test using the lab 
computers 

• Open book, open computer, help provided 

• Everyone should be able to get 100%! 
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Practical Test 2 
• Create files and directories as instructed 
• Create Python program to match the 
description given – includes plotting 

• Modify the code and the plot 
• Capture your command history into a file 
within the PracTest2 directory 

• Zip your files and submit them through the 
assessment page 
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Next week… 
• Scripting 
• Automation 
• Data Wrangling (Lecture 7) 

Fundamentals_Lecture5 50 


