
LECTURE 5
FILES AND GRIDS
Fundamentals of Programming - COMP1005

Department of Computing
Curtin University

Updated 26/3/18

Copyright Warning
COMMONWEALTH OF AUSTRALIA

Copyright Regulation 1969
WARNING

This material has been copied and communicated to
you by or on behalf of Curtin University of

Technology pursuant to Part VB of the Copyright
Act 1968 (the Act)

The material in this communication may be subject
to copyright under the Act. Any further copying or
communication of this material by you may be the

subject of copyright protection under the Act.
Do not remove this notice

Fundamentals_Lecture5 2

Learning Outcomes
• Understand and use text files to store and
load data

• Develop simple grid-based simulations
using 2-dimensional arrays: fire modelling,
Game of Life

• Apply list comprehensions to simplify code
• Experiment with parameters to investigate
how they alter the outcomes of simulations

Fundamentals_Lecture5 3

The story so far…
• We've gone from working with single
variables…
…through lists and strings…
 … then one dimensional arrays…
 … and 2-D arrays …
 … and N-D arrays …

• However, every piece of data we have used
has been entered or generated within our
programs.

Fundamentals_Lecture5 4

The story so far…

• EXCEPT… the prettyface.py critter
• This was read in from a file within scipy.misc
• We have also saved our plots as files to use
later

• Files can be read from (used as input) or
written to (output)

• We'll learn how to use them this week

Fundamentals_Lecture5 5

The story so far…
• Also, we have been using arrays to
represent values
 growtharray.py for population values

• We can view an array as a grid,
representing 2D or 3D space in the real (or
imaginary) world

• Grids are an abstraction of the world, with
each cell representing a 2D or 3D space

• We'll look at a few examples this week
Fundamentals_Lecture5 6

FILES
Fundamentals of Programming
Lecture 5

Fundamentals_Lecture5 7

Python input and output
• So far we've been printing to the screen and
reading from the keyboard…

print('What... is your name?')
name = input()
It is 'Arthur', King of the Britons.
print('What... is your quest?')
quest = input()
To seek the Holy Grail.
print('What... is the air-speed velocity of
an unladen swallow?')
velocity = input()
What do you mean? An African or European
swallow?

Fundamentals_Lecture5 8

Files
• Files allow us to have persistent data –
data that stays after our program has run

• Files are accessed via their name (and
directory)

• Some files hold text (python code, csv
files) and others may hold binary data (e.g.
images)

• When we open a file, we can indicate if we
want to read, write or append to the file
• default is 'r' - read

Fundamentals_Lecture5 9

Working with Files
• Python provides access to file functions and
methods through the file object

• To create a file object and have access to a
file, we need to use the open() method:

spamfile = open('spam.txt')
opens text file for reading
csvfile = open('newdata.csv', w)
creates a new csv/text file for
writing, overwrites it if exists
datafile = open('olddata.dat', ab)
opens existing binary file and appends

Fundamentals_Lecture5 10

File modes
Read Write Append Description

r w a Read/write/append text
files

rb wb ab Read/write/append binary
files

r+ w+ a+ Opens for reading and
writing

rb+ wb+ ab+ Opens for reading and
writing binary files

file pointer
at
beginning

file pointer
at
beginning

file pointer
at end of
file

Note: you can accidentally
delete a file by opening it in
the wrong mode!

Fundamentals_Lecture5 11

Note: We will focus on text files

File locations
• To specify a path to the file, add the path to
the name the file

• If you don’t specify a path, Python will look
for the file in the current directory

• path = '/home/12345678/FOP/spam.txt'
• spamfile = open(path, 'r')

Fundamentals_Lecture5 12

Closing Files
• A bit like ejecting a USB – we need to safely
close our files

• Always call close() after you have finished
working with files

• Closing flushes any unwritten information and
closes the file object

spamfile.close()
csvfile.close()
datafile.close()

Fundamentals_Lecture5 13

Reading files
• Python has three read methods to work
with open files
pythonfile.read()
reads entire contents of file
pythonfile.readline()
reads one line of the file
#(to next newline)
pythonfile.readlines()
reads entire contents of file as
a list, one line per element

Fundamentals_Lecture5 14

Example
names.py

names = open('names.txt')
thischunk = names.read()
print(thischunk)
names.close()

names = open('names.txt')
thischunk = names.readline()
print(thischunk)
names.close()

names = open('names.txt')
thischunk =
names.readlines()
print(thischunk)
names.close()

OUTPUT

Eric
John
Terry
Graham
Michael

Eric

['Eric\n', 'John\n', 'Terry
\n', 'Graham\n', 'Michael
\n']

Fundamentals_Lecture5 15

Writing to files
• Use the returned file object to write to the file

Open a file
fo = open("grail.txt", "w")
fo.write("Come back here and I'll bite your
legs off! \nBlack Knight\n");
Close opened file
fo.close()
grail.txt:

Come back here and I'll bite your legs off!
Black Knight
 Fundamentals_Lecture5 16

Files are like arrays
• Our text files are very similar to 1D arrays
• They can be broken up by newline characters,
but are really just long strings

• You decide how you want to read and write
them to suit the problem you are working on

• Python keeps track of where it is in the file
with a pointer that moves along with each
read or write

Fundamentals_Lecture5 17

E r i c \n J o h n \n T e r r y \n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CSV Files
•  It's common to receive data as comma separated values (csv)
•  There is a csv package, we'll look at that in a few weeks
•  For now, read a csv file as text, then split on the commas:
namesfile = open('names.csv')
line = namesfile.readline()
linelist = line.split(',')
print(linelist)

•  To write csv, convert the list to a comma separated string using

the join() method:
newnames = open('names3.csv', 'w')
newline = ','.join(linelist)
print(newline)
newnames.write(newline)

Fundamentals_Lecture3 18

Pythonic file handling
• It is good practice to use the with keyword
when dealing with file objects.

• This has the advantage that the file is properly
closed after its suite finishes, even if an
exception is raised on the way.

• It is also much shorter than the other
approach

with open('workfile', 'r') as f:
 read_data = f.read()
.

Fundamentals_Lecture3 19 https://docs.python.org/3.3/tutorial/inputoutput.html#reading-and-writing-files

Binary Files
• We have focused on text files
• Using binary files is beyond the scope of this course
• With text files, data is stored as characters
• Advantage: binary files store the data as binary
which is much more compact

• Disadvantage: we can't read them directly and are
unlikely to be able to fix it if is corrupted

• The files look a
bit like this when
you open them

• See these docs
for more information:

Fundamentals_Lecture3 20 http://code.activestate.com/recipes/577610-decoding-binary-files/

https://docs.python.org/3.3/tutorial/inputoutput.html#reading-and-writing-files

GRIDS
Fundamentals of Programming
Lecture 5

Fundamentals_Lecture5 21

Grid Decomposition
• This approach breaks up a space into a
multidimensional grid

• Each cell on the grid has one or more
associated values

• The cells impact on each other over time
• General algorithm:
 For each time_step
 For each grid dimension
 For each cell
 Calculate the next value

Fundamentals_Lecture5 22

Neighbourhoods
•  In a 2-D grid, the von Neumann neighbourhood of a
site is the set of cells directly North, South, East and
West or the site, and the site itself

• The Moore neigbourhood adds NE, NW, SE and SW
• The four or eight cells, not including the site, are the
site's neighbours

Fundamentals_Lecture5 23

NW N NE

W Site E

SW S SE

NW N NE

W Site E

SW S SE

Heat diffusion
• In Practical 5, we will work with a grid-
based program, heat.py

• The program is a simple model of heat
diffusion

• This model is based on Newton's law of
heating and cooling
• "Rate of change of temperature of an object is
proportional to the difference between the
objects' temperature and that of its
surroundings" (Shiflet & Shiflet)

Fundamentals_Lecture5 24

Heat diffusion formula
• We use a temporary
array (b2) to store
values for the next
iteration

• The next (row,col)
element b2[r,c] will be
the result of the 3x3
calculation

• We do this for every
row and column of the
array

(ROW – 1,
COL – 1)
 * 0.1

(ROW – 1,
COL)
* 0.1

(ROW – 1,
COL + 1)
* 0.1

(ROW,
COL – 1)
* 0.1

(ROW,
COL)
* 0.2

(ROW,
COL + 1)
* 0.1

(ROW + 1,
COL – 1)
* 0.1

(ROW + 1,
COL)
* 0.1

(ROW + 1,
COL + 1)
* 0.1

Fundamentals_Lecture5 25

(ROW – 1,
COL – 1)
 * 0.1

(ROW – 1,
COL)
* 0.1

(ROW – 1,
COL + 1)
* 0.1

(ROW, COL
– 1)
* 0.1

(ROW,
COL)
* 0.2

(ROW, COL
+ 1)
* 0.1

(ROW + 1,
COL – 1)
* 0.1

(ROW + 1,
COL)
* 0.1

(ROW + 1,
COL + 1)
* 0.1

b2[r,c]

heat.py

heat.py

import matplotlib.pyplot as plt
import numpy as np
size = 10
b = np.zeros((size,size))
Create heat source
for i in range(size):
 b[i,0] = 10
print('\nHEAT DIFFUSION SIMULATION\n')
print('Initial array...')
print(b)
Temp array for storing calculations
b2 = np.zeros((size,size))

Fundamentals_Lecture5 26

heat.py
Calculate heat diffusion
for timestep in range(5):
 for r in range(1, size-1):
 for c in range (1, size-1):
 b2[r,c] = (b[r-1,c-1]*0.1 + b[r-1,c]*0.1
 + b[r-1,c+1]*0.1 + b[r,c-1]*0.1
 + b[r,c]*0.2 + b[r,c+1]*0.1
 + b[r+1,c-1]*0.1 + b[r+1,c]*0.1
 + b[r+1,c+1]*0.1)
 for i in range(size):
 b2[i,0] = 10
 b = b2.copy()
plt.title('Heat Diffusion Simulation')
plt.imshow(b2, cmap=plt.cm.hot)
plt.colorbar()
plt.show()

Fundamentals_Lecture3 27

heat.py
Calculate heat diffusion
for timestep in range(5):
 for r in range(1, size-1):
 for c in range (1, size-1):
 b2[r,c] = (b[r-1,c-1]*0.1 + b[r-1,c]*0.1
 + b[r-1,c+1]*0.1 + b[r,c-1]*0.1
 + b[r,c]*0.2 + b[r,c+1]*0.1
 + b[r+1,c-1]*0.1 + b[r+1,c]*0.1
 + b[r+1,c+1]*0.1)
 for i in range(size):
 b2[i,0] = 10
 b = b2.copy()
plt.title('Heat Diffusion Simulation')
plt.imshow(b2, cmap=plt.cm.hot, interpolation='bilinear')
plt.colorbar()
plt.show()

Fundamentals_Lecture3 28

Fireplan
• Another application of grid
decomposition is fire modelling

• Each cell of the grid can include
a value for fuel/vegetation, slope,
how recently it's been burnt,
moisture etc

• Putting these together in a calculation can help
predict the movement of a fire

• Retired Curtin lecturer Steve Kessell
commercialised a product FirePlan for this purpose

• We will do a simplifed version in the pracs

Fundamentals_Lecture3 29 http://www.shodor.org/interactivate/activities/FireAssessment/

Game of Life
• The Game of Life was invented in 1970 by
the British mathematician John Horton
Conway

• The Game of Life was Conway’s way of
simplifying von Neumann’s ideas

• It is the best-known example of a cellular
automaton which is any system in which
rules are applied to cells and their
neighbours in a regular grid

Fundamentals_Lecture3 30 http://web.stanford.edu/~cdebs/GameOfLife/

Game of Life - Rules
The game is designed around the following rules:

1.  Any live cell with fewer than two live neighbors

dies, as if caused by underpopulation
2.  Any live cell with more than three live neighbors

dies, as if by overcrowding

3.  Any live cell with two or three live neighbors lives

on to the next generation

4.  Any dead cell with exactly three live neighbors
becomes a live cell.

Fundamentals_Lecture3 31 http://web.stanford.edu/~cdebs/GameOfLife/

Image Filters
• Many image processing techniques are based on
small 2-D filters

• scikit-image provides these routines in Python
• They are making your plots pretty!
• To use a filter through scikit-image:

from skimage import data, io, filters
image = data.coins()
... or any other NumPy array!
edges = filters.sobel(image)
io.imshow(edges)
io.show()

Fundamentals_Lecture3 32

EXAMPLES
Fundamentals of Programming
Lecture 5

Fundamentals_Lecture5 33

Computational Fluid Dynamics
• CFD is the use of applied
mathematics, physics and
computational software to visualize
how fluids
(gases or liquids) flow
and how fluids affect
objects as they flow past.

• CFD is based on
Navier–Stokes equations. These
equations describe how velocity,
pressure, temperature and density
of a moving fluid are related.

Fundamentals_Lecture5 34

https://www.quora.com/What-is-a-brief-description-of-how-
computational-fluid-dynamics-CFD-work

https://s1.cdn.autoevolution.com/images/news/how-does-cfd-
computational-fluid-dynamics-work-6400.html

Climate models
• Some of the biggest
and most complex
computer models

• Made up of a 3-D grid with many, many
variables being tracked and calculated

• We'll look at an online description of climate
models:

https://koshland-science-museum.org/explore-the-
science/interactives/how-do-climate-models-work

Fundamentals_Lecture5 35

Weather Forecasting
• Similar to climate modelling,
but focussing on near
predictions and local detail

• Allow for predictions and warnings as with
Hurrican Harvey recently in the US

• NASA has a range of models for tracking
hurricanes and wild weather:
https://pmm.nasa.gov/articles/how-does-nasa-study-
hurricanes

• Accurate predictions are vital for disaster
planning

Fundamentals_Lecture5 36

LIST COMPREHENSIONS
Fundamentals of Programming
Lecture 5

Fundamentals_Lecture5 37

List Comprehensions
• A Pythonic approach to a frequent operation
• Turns a multi-line for-loop into a one liner
• Basic syntax:
[transformation iteration filter] OR
[expression for item in list if conditional]

• Equivalent to:
 for item in list:
 if conditional:
 expression

 Fundamentals_Lecture5 38 http://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/

Unconditional list comprehensions
numbers = [1, 2, 3, 4, 5]

doubled_numbers = []
for n in numbers:
 doubled_numbers.append(n * 2)

doubled_numbers = [n * 2 for n in numbers]

Fundamentals_Lecture5 39

Conditional list comprehensions
numbers = [1, 2, 3, 4, 5]

doubled_odds = []
for n in numbers:
 if n % 2 == 1:
 doubled_odds.append(n * 2)

doubled_odds = [n * 2 for n in numbers
 if n % 2 == 1]

Fundamentals_Lecture5 40

Practical 5: heatsource.py

Fundamentals_Lecture12 41

create heat source
hlist = []
fileobj = open('heatsource.csv','r')
for line in fileobj:
 line_s = line.strip()
 ints = [int(x) for x in line_s.split(',')]
 hlist.append(ints)
fileobj.close()

ints = []
for x in line_s.split(','):
 ints.append(int(x))

Practical 5: list of squares

Fundamentals_Lecture5 42

create list of first 10 square numbers
squares = []
for s in range(1, 11):
 squares.append(s * s)

numbers = list(range(1, 11))

squares = [s * s for s in numbers]

squares = [s * s for s in range(1, 11)]

print(numbers)

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

More examples:
list1 = [3,4,5]
multiplied = [item*3 for item in list1]
print(multiplied)

[9,12,15]

def double(x):
 return x*2

doubled = [double(x) for x in range(10)]

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Fundamentals_Lecture5 43 http://www.pythonforbeginners.com/basics/list-comprehensions-in-python

More examples:
fname = ["Arthur","King","Of","The","Britons"]
initials = [word[0] for word in fullname]
print(initials)

['A', 'K', 'O', 'T', 'B']

lowered = [x.lower() for x in ["F","O","P"]]
print(lowered)

['f', 'o', 'p']

Fundamentals_Lecture5 44

Summary
• We've looked at how we can use text files to
store and load data

• We've explored and implemented simple grid-
based simulations using 2-dimensional arrays:
fire modelling, Game of Life

• We've seen how to apply list comprehensions
to simplify code

• In the practicals we will:
• Experiment with parameters to investigate how they

alter the outcomes of simulations

Fundamentals_Lecture5 45

Practical Sessions
• This week we will explore the heat diffusion
simulation

• We will access and explore grid-based
programs:
•  fireplan – modelling the movement of fire
• game of life – modelling a population over time

• We will also explore reading from and
saving to files, and using list
comprehensions

Fundamentals_Lecture5 46

Assessments
• The next assessment will be held during
your assigned practical this week (Prac 5)

• It will be a short practical test using the lab
computers

• Open book, open computer, help provided

• Everyone should be able to get 100%!

Fundamentals_Lecture5 47

Practical Test 2
• Create files and directories as instructed
• Create Python program to match the
description given – includes plotting

• Modify the code and the plot
• Capture your command history into a file
within the PracTest2 directory

• Zip your files and submit them through the
assessment page

Fundamentals_Lecture5 48

References
•  https://www.tutorialspoint.com/python/python_files_io.htm
•  https://www.digitalocean.com/community/tutorials/how-to-

handle-plain-text-files-in-python-3
•  https://www.quora.com/What-is-a-brief-description-of-how-

computational-fluid-dynamics-CFD-work
•  https://www.autoevolution.com/news/how-does-cfd-

computational-fluid-dynamics-work-6400.html
•  https://pmm.nasa.gov/articles/how-does-nasa-study-hurricanes
•  https://www.climatechangeinaustralia.gov.au/en/climate-

campus/modelling-and-projections/climate-models/theory-and-
physics/

•  https://koshland-science-museum.org/explore-the-science/
interactives/how-do-climate-models-work

Fundamentals_Lecture5 49

Next week…
• Scripting
• Automation
• Data Wrangling (Lecture 7)

Fundamentals_Lecture5 50

