151 lines
5.8 KiB
Python
151 lines
5.8 KiB
Python
import platform
|
|
import random
|
|
import pandas as pd
|
|
|
|
if platform.system() != 'Windows':
|
|
import resource
|
|
|
|
def dataTest(Data):
|
|
datatest = Data()
|
|
data = 'data/pima-indians-diabetes.csv'
|
|
try:
|
|
x_data,y_data = datatest.dataAllocation(data)
|
|
print("dataAllocation Function Executed")
|
|
except:
|
|
print("Data not imported correctly")
|
|
try:
|
|
x_train, x_test, y_train, y_test = datatest.trainSets(x_data,y_data)
|
|
print("trainSets Function Executed")
|
|
except:
|
|
print("Data not imported correctly")
|
|
|
|
def linearTest(Data,LinearRegression):
|
|
dataset = Data()
|
|
linear = LinearRegression()
|
|
data = 'data/pima-indians-diabetes.csv'
|
|
x_data,y_data = dataset.dataAllocation(data)
|
|
x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data)
|
|
try:
|
|
y_predict_train, y_predict_test = linear.linearClassifier(x_train,x_test, y_train)
|
|
print("linearClassifier Function Executed")
|
|
except:
|
|
print("Failed to execute linearClassifier()")
|
|
try:
|
|
print("Linear Regression Train Accuracy: ", linear.lgTrainAccuracy(y_train,y_predict_train))
|
|
except:
|
|
print("Failed to execute lgTrainAccuracy()")
|
|
try:
|
|
print("Linear Regression Test Accuracy: ", linear.lgTestAccuracy(y_test,y_predict_test))
|
|
except:
|
|
print("Failed to execute lgTestAccuracy()")
|
|
|
|
def RandomForestTest(Data,RFClassifier):
|
|
dataset = Data()
|
|
rf = RFClassifier()
|
|
data = 'data/pima-indians-diabetes.csv'
|
|
x_data,y_data = dataset.dataAllocation(data)
|
|
x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data)
|
|
try:
|
|
rf_clf,y_predict_train, y_predict_test = rf.randomForestClassifier(x_train,x_test, y_train)
|
|
print("randomForestClassifier Function Executed")
|
|
except:
|
|
print("Failed to execute randomForestClassifier()")
|
|
try:
|
|
print("Random Forest Train Accuracy: ",rf.rfTrainAccuracy(y_train,y_predict_train))
|
|
except:
|
|
print("Failed to execute rfTrainAccuracy()")
|
|
try:
|
|
print("Random Forest Test Accuracy: ",rf.rfTestAccuracy(y_test,y_predict_test))
|
|
except:
|
|
print("Failed to execute rfTrainAccuracy()")
|
|
try:
|
|
print("Random Forest Feature Importance: ",rf.rfFeatureImportance(rf_clf))
|
|
except:
|
|
print("Failed to execute rfFeatureImportance()")
|
|
try:
|
|
print("Random Forest Sorted Feature Importance: ",rf.sortedRFFeatureImportanceIndicies(rf_clf))
|
|
except:
|
|
print("Failed to execute sortedRFFeatureImportanceIndicies()")
|
|
try:
|
|
gscv_rfc = rf.hyperParameterTuning(rf_clf,x_train,y_train)
|
|
print("HyperParameterTuning Function Executed")
|
|
except:
|
|
print("Failed to execute hyperParameterTuning()")
|
|
#try:
|
|
print("Random Forest Best Parameters: ",rf.bestParams(gscv_rfc))
|
|
#except:
|
|
#print("Failed to execute bestParams()")
|
|
try:
|
|
print("Random Forest Best Score: ",rf.bestScore(gscv_rfc))
|
|
except:
|
|
print("Failed to execute bestScore()")
|
|
|
|
def SupportVectorMachineTest(Data,SupportVectorMachine):
|
|
dataset = Data()
|
|
svm = SupportVectorMachine()
|
|
data = 'data/pima-indians-diabetes.csv'
|
|
x_data,y_data = dataset.dataAllocation(data)
|
|
x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data)
|
|
try:
|
|
scaled_x_train, scaled_x_test = svm.dataPreProcess(x_train,x_test)
|
|
print("dataPreProcess Function Executed")
|
|
except:
|
|
print("Failed to execute dataPreProcess()")
|
|
try:
|
|
y_predict_train,y_predict_test = svm.SVCClassifier(scaled_x_train,scaled_x_test, y_train)
|
|
print("SVCClassifier Function Executed")
|
|
except:
|
|
print("Failed to execute SVCClassifier()")
|
|
try:
|
|
print("Support Vector Machine Train Accuracy: ",svm.SVCTrainAccuracy(y_train,y_predict_train))
|
|
except:
|
|
print("Failed to execute SVCTrainAccuracy()")
|
|
try:
|
|
print("Support Vector Machine Test Accuracy: ",svm.SVCTestAccuracy(y_test,y_predict_test))
|
|
except:
|
|
print("Failed to execute SVCTestAccuracy()")
|
|
try:
|
|
svm_cv, best_score = svm.SVMBestScore(scaled_x_train, y_train)
|
|
print("Support Vector Machine Best Score: ", best_score)
|
|
except:
|
|
print("Failed to execute SVMBestScore()")
|
|
try:
|
|
y_predict_train,y_predict_test = svm.SVCClassifierParam(svm_cv,scaled_x_train,scaled_x_test,y_train)
|
|
print("SVCClassifierParam Function Executed")
|
|
except:
|
|
print("Failed to execute SVCClassifierParam()")
|
|
try:
|
|
print("Support Vector Machine Train Accuracy: ",svm.svcTrainAccuracy(y_train,y_predict_train))
|
|
except:
|
|
print("Failed to execute SVCTrainAccuracy()")
|
|
try:
|
|
print("Support Vector Machine Test Accuracy: ",svm.svcTestAccuracy(y_test,y_predict_test))
|
|
except:
|
|
print("Failed to execute SVCTestAccuracy()")
|
|
try:
|
|
print("Support Vector Machine Rank Test Score: ",svm.SVMRankTestScore(svm_cv))
|
|
except:
|
|
print("Failed to execute SVCTestAccuracy()")
|
|
try:
|
|
print("Support Vector Machine Mean Test Score: ",svm.SVMMeanTestScore(svm_cv))
|
|
except:
|
|
print("Failed to execute SVCTestAccuracy()")
|
|
def PCATest(Data,PCAClassifier):
|
|
dataset = Data()
|
|
pc = PCAClassifier()
|
|
data = 'data/pima-indians-diabetes.csv'
|
|
x_data,y_data = dataset.dataAllocation(data)
|
|
#x_train, x_test, y_train, y_test = dataset.trainSets(x_data,y_data)
|
|
try:
|
|
pca = pc.pcaClassifier(x_data)
|
|
print("pcaClassifier Function Executed")
|
|
except:
|
|
print("Failed to execute pcaClassifier()")
|
|
try:
|
|
print("PCA Explained Variance Ratio: ",pc.pcaExplainedVarianceRatio(pca))
|
|
except:
|
|
print("Failed to execute pcaExplainedVarianceRatio()")
|
|
try:
|
|
print("PCA Singular Values: ",pc.pcaSingularValues(pca))
|
|
except:
|
|
print("Failed to execute pcaSingularValues()") |