Files
004_comission/vinniesniper-54816/task1/_lab/007-test-beach.old/test_case/cascade.xml
louiscklaw b3cc8e8323 update,
2025-01-31 22:57:47 +08:00

1163 lines
33 KiB
XML

<?xml version="1.0"?>
<opencv_storage>
<cascade>
<stageType>BOOST</stageType>
<featureType>HAAR</featureType>
<height>20</height>
<width>20</width>
<stageParams>
<boostType>GAB</boostType>
<minHitRate>9.9500000476837158e-01</minHitRate>
<maxFalseAlarm>5.0000000000000000e-01</maxFalseAlarm>
<weightTrimRate>9.4999999999999996e-01</weightTrimRate>
<maxDepth>1</maxDepth>
<maxWeakCount>100</maxWeakCount></stageParams>
<featureParams>
<maxCatCount>0</maxCatCount>
<featSize>1</featSize>
<mode>ALL</mode></featureParams>
<stageNum>20</stageNum>
<stages>
<!-- stage 0 -->
<_>
<maxWeakCount>1</maxWeakCount>
<stageThreshold>1.</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 6 1.4633777737617493e-01</internalNodes>
<leafValues>
-1. 1.</leafValues></_></weakClassifiers></_>
<!-- stage 1 -->
<_>
<maxWeakCount>2</maxWeakCount>
<stageThreshold>-2.3089504241943359e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 23 4.6074818819761276e-02</internalNodes>
<leafValues>
-9.1946309804916382e-01 8.4615385532379150e-01</leafValues></_>
<_>
<internalNodes>
0 -1 55 -1.6980491578578949e-02</internalNodes>
<leafValues>
6.8856805562973022e-01 -8.8722848892211914e-01</leafValues></_></weakClassifiers></_>
<!-- stage 2 -->
<_>
<maxWeakCount>2</maxWeakCount>
<stageThreshold>-1.7964847385883331e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 59 -2.7103815227746964e-02</internalNodes>
<leafValues>
7.4418604373931885e-01 -8.0519479513168335e-01</leafValues></_>
<_>
<internalNodes>
0 -1 61 -4.1718579828739166e-02</internalNodes>
<leafValues>
6.6642206907272339e-01 -9.2383450269699097e-01</leafValues></_></weakClassifiers></_>
<!-- stage 3 -->
<_>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>-9.0311133861541748e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 43 -7.0151914842426777e-03</internalNodes>
<leafValues>
5.4639172554016113e-01 -7.9020977020263672e-01</leafValues></_>
<_>
<internalNodes>
0 -1 10 2.4374751374125481e-03</internalNodes>
<leafValues>
-8.6455965042114258e-01 4.6789094805717468e-01</leafValues></_>
<_>
<internalNodes>
0 -1 71 3.4720588475465775e-02</internalNodes>
<leafValues>
-5.8079248666763306e-01 8.5571801662445068e-01</leafValues></_></weakClassifiers></_>
<!-- stage 4 -->
<_>
<maxWeakCount>2</maxWeakCount>
<stageThreshold>-2.8016000986099243e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 56 -2.3533696308732033e-02</internalNodes>
<leafValues>
6.1616164445877075e-01 -8.5815602540969849e-01</leafValues></_>
<_>
<internalNodes>
0 -1 24 -2.1514561027288437e-02</internalNodes>
<leafValues>
5.7799601554870605e-01 -7.7176952362060547e-01</leafValues></_></weakClassifiers></_>
<!-- stage 5 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-1.2211697101593018e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 21 3.3331759274005890e-02</internalNodes>
<leafValues>
-8.3999997377395630e-01 3.9130434393882751e-01</leafValues></_>
<_>
<internalNodes>
0 -1 9 8.7539050728082657e-03</internalNodes>
<leafValues>
-6.8229031562805176e-01 5.4595780372619629e-01</leafValues></_>
<_>
<internalNodes>
0 -1 66 1.1612564325332642e-01</internalNodes>
<leafValues>
-6.8689906597137451e-01 5.5451011657714844e-01</leafValues></_>
<_>
<internalNodes>
0 -1 30 -3.8467794656753540e-02</internalNodes>
<leafValues>
4.4059768319129944e-01 -7.8981602191925049e-01</leafValues></_>
<_>
<internalNodes>
0 -1 39 2.1981358528137207e-02</internalNodes>
<leafValues>
-7.6108980178833008e-01 5.4742199182510376e-01</leafValues></_></weakClassifiers></_>
<!-- stage 6 -->
<_>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-2.8942787647247314e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 79 5.2943427115678787e-02</internalNodes>
<leafValues>
-5.5963301658630371e-01 6.2962961196899414e-01</leafValues></_>
<_>
<internalNodes>
0 -1 1 3.6511167418211699e-03</internalNodes>
<leafValues>
-7.1278822422027588e-01 4.7890207171440125e-01</leafValues></_>
<_>
<internalNodes>
0 -1 7 -6.4386208541691303e-03</internalNodes>
<leafValues>
6.5037083625793457e-01 -5.7303619384765625e-01</leafValues></_>
<_>
<internalNodes>
0 -1 80 7.8921693784650415e-05</internalNodes>
<leafValues>
-8.2492333650588989e-01 4.2639467120170593e-01</leafValues></_></weakClassifiers></_>
<!-- stage 7 -->
<_>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-6.4279282093048096e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 8 8.3448283374309540e-02</internalNodes>
<leafValues>
-7.5000000000000000e-01 4.5454546809196472e-01</leafValues></_>
<_>
<internalNodes>
0 -1 64 -1.8162004649639130e-02</internalNodes>
<leafValues>
5.7600373029708862e-01 -5.4910737276077271e-01</leafValues></_>
<_>
<internalNodes>
0 -1 22 6.3498395320493728e-05</internalNodes>
<leafValues>
-8.7797611951828003e-01 4.2248728871345520e-01</leafValues></_>
<_>
<internalNodes>
0 -1 84 -2.0760544430231676e-05</internalNodes>
<leafValues>
3.7740352749824524e-01 -7.9536592960357666e-01</leafValues></_></weakClassifiers></_>
<!-- stage 8 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-9.9426209926605225e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 70 -2.4555174168199301e-03</internalNodes>
<leafValues>
4.6000000834465027e-01 -6.2222224473953247e-01</leafValues></_>
<_>
<internalNodes>
0 -1 45 6.0998879373073578e-02</internalNodes>
<leafValues>
-4.3921554088592529e-01 6.3463175296783447e-01</leafValues></_>
<_>
<internalNodes>
0 -1 26 1.5519063174724579e-01</internalNodes>
<leafValues>
-3.9400851726531982e-01 7.7251571416854858e-01</leafValues></_>
<_>
<internalNodes>
0 -1 49 -8.6000803858041763e-03</internalNodes>
<leafValues>
9.3435555696487427e-01 -3.0686542391777039e-01</leafValues></_>
<_>
<internalNodes>
0 -1 28 8.9611085131764412e-03</internalNodes>
<leafValues>
-3.1417262554168701e-01 7.6103687286376953e-01</leafValues></_></weakClassifiers></_>
<!-- stage 9 -->
<_>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-2.9906558990478516e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 2 8.2382913678884506e-03</internalNodes>
<leafValues>
-8.4375000000000000e-01 3.4920635819435120e-01</leafValues></_>
<_>
<internalNodes>
0 -1 19 -9.5752701163291931e-03</internalNodes>
<leafValues>
8.0544632673263550e-01 -4.2889645695686340e-01</leafValues></_>
<_>
<internalNodes>
0 -1 48 3.0976006761193275e-02</internalNodes>
<leafValues>
-5.9380745887756348e-01 5.2581018209457397e-01</leafValues></_>
<_>
<internalNodes>
0 -1 78 4.4765815138816833e-02</internalNodes>
<leafValues>
-7.4518567323684692e-01 4.9558079242706299e-01</leafValues></_></weakClassifiers></_>
<!-- stage 10 -->
<_>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-6.6004019975662231e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 27 -7.5675155967473984e-03</internalNodes>
<leafValues>
4.1509434580802917e-01 -6.4285713434219360e-01</leafValues></_>
<_>
<internalNodes>
0 -1 17 8.3275958895683289e-03</internalNodes>
<leafValues>
2.8517252206802368e-01 -1.</leafValues></_>
<_>
<internalNodes>
0 -1 72 1.0781205492094159e-04</internalNodes>
<leafValues>
-7.3285722732543945e-01 4.2369171977043152e-01</leafValues></_>
<_>
<internalNodes>
0 -1 36 4.4706696644425392e-03</internalNodes>
<leafValues>
-6.6985988616943359e-01 4.3050161004066467e-01</leafValues></_></weakClassifiers></_>
<!-- stage 11 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-4.5439532399177551e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 20 2.4139225482940674e-02</internalNodes>
<leafValues>
-7.4647885560989380e-01 3.6134454607963562e-01</leafValues></_>
<_>
<internalNodes>
0 -1 85 1.2371048796921968e-04</internalNodes>
<leafValues>
-5.8314085006713867e-01 5.3353840112686157e-01</leafValues></_>
<_>
<internalNodes>
0 -1 34 1.8258250784128904e-03</internalNodes>
<leafValues>
-3.9547196030616760e-01 7.9862469434738159e-01</leafValues></_>
<_>
<internalNodes>
0 -1 60 -4.6682343818247318e-03</internalNodes>
<leafValues>
6.1949491500854492e-01 -4.9967157840728760e-01</leafValues></_>
<_>
<internalNodes>
0 -1 53 -8.2359090447425842e-03</internalNodes>
<leafValues>
7.0402377843856812e-01 -4.5413470268249512e-01</leafValues></_></weakClassifiers></_>
<!-- stage 12 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-7.5735378265380859e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 12 6.0099065303802490e-02</internalNodes>
<leafValues>
-3.7226277589797974e-01 7.7358490228652954e-01</leafValues></_>
<_>
<internalNodes>
0 -1 62 -2.3117434233427048e-02</internalNodes>
<leafValues>
3.7086638808250427e-01 -8.7196463346481323e-01</leafValues></_>
<_>
<internalNodes>
0 -1 31 3.7543036043643951e-02</internalNodes>
<leafValues>
-6.9697183370590210e-01 2.9111805558204651e-01</leafValues></_>
<_>
<internalNodes>
0 -1 37 -1.0274585336446762e-02</internalNodes>
<leafValues>
8.4387946128845215e-01 -3.2833877205848694e-01</leafValues></_>
<_>
<internalNodes>
0 -1 73 3.6119457799941301e-03</internalNodes>
<leafValues>
-6.2175333499908447e-01 5.6400096416473389e-01</leafValues></_></weakClassifiers></_>
<!-- stage 13 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-2.3048946261405945e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 15 1.1263249907642603e-03</internalNodes>
<leafValues>
2.5179857015609741e-01 -8.8235294818878174e-01</leafValues></_>
<_>
<internalNodes>
0 -1 11 -1.9959431141614914e-02</internalNodes>
<leafValues>
3.1695398688316345e-01 -7.8314524888992310e-01</leafValues></_>
<_>
<internalNodes>
0 -1 57 -8.9618079364299774e-03</internalNodes>
<leafValues>
9.5916211605072021e-01 -3.0125212669372559e-01</leafValues></_>
<_>
<internalNodes>
0 -1 32 -5.5899396538734436e-03</internalNodes>
<leafValues>
3.7490981817245483e-01 -7.5796777009963989e-01</leafValues></_>
<_>
<internalNodes>
0 -1 50 4.4993907213211060e-02</internalNodes>
<leafValues>
-3.9723470807075500e-01 8.1483519077301025e-01</leafValues></_>
<_>
<internalNodes>
0 -1 81 2.3734662681818008e-02</internalNodes>
<leafValues>
-3.6108192801475525e-01 6.5848648548126221e-01</leafValues></_></weakClassifiers></_>
<!-- stage 14 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-1.1300646066665649e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 46 6.2785662710666656e-02</internalNodes>
<leafValues>
-4.7368422150611877e-01 5.7894736528396606e-01</leafValues></_>
<_>
<internalNodes>
0 -1 4 -6.0779783874750137e-02</internalNodes>
<leafValues>
4.4026842713356018e-01 -6.3591194152832031e-01</leafValues></_>
<_>
<internalNodes>
0 -1 42 -1.5039956197142601e-02</internalNodes>
<leafValues>
8.0707776546478271e-01 -3.2692545652389526e-01</leafValues></_>
<_>
<internalNodes>
0 -1 44 2.8002201579511166e-03</internalNodes>
<leafValues>
3.6420840024948120e-01 -7.7987545728683472e-01</leafValues></_>
<_>
<internalNodes>
0 -1 0 8.9911436662077904e-03</internalNodes>
<leafValues>
-5.4317355155944824e-01 4.6474710106849670e-01</leafValues></_>
<_>
<internalNodes>
0 -1 67 1.3074473245069385e-03</internalNodes>
<leafValues>
-5.1241797208786011e-01 5.5144315958023071e-01</leafValues></_></weakClassifiers></_>
<!-- stage 15 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-4.9754691123962402e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 51 3.6720909178256989e-02</internalNodes>
<leafValues>
-3.2867133617401123e-01 7.8723406791687012e-01</leafValues></_>
<_>
<internalNodes>
0 -1 14 2.0697445506812073e-05</internalNodes>
<leafValues>
-6.0064125061035156e-01 4.2568200826644897e-01</leafValues></_>
<_>
<internalNodes>
0 -1 38 1.3473794795572758e-02</internalNodes>
<leafValues>
-4.6690773963928223e-01 5.2989631891250610e-01</leafValues></_>
<_>
<internalNodes>
0 -1 33 3.6489672958850861e-02</internalNodes>
<leafValues>
-5.0570976734161377e-01 6.0725086927413940e-01</leafValues></_>
<_>
<internalNodes>
0 -1 82 -2.1448038751259446e-05</internalNodes>
<leafValues>
4.2319318652153015e-01 -6.1874419450759888e-01</leafValues></_></weakClassifiers></_>
<!-- stage 16 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-6.3470834493637085e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 77 -2.1306434646248817e-03</internalNodes>
<leafValues>
5.3658539056777954e-01 -5.0000000000000000e-01</leafValues></_>
<_>
<internalNodes>
0 -1 3 1.1879188939929008e-02</internalNodes>
<leafValues>
-7.5789386034011841e-01 3.9663997292518616e-01</leafValues></_>
<_>
<internalNodes>
0 -1 58 5.4993955418467522e-03</internalNodes>
<leafValues>
-4.0011426806449890e-01 7.2467309236526489e-01</leafValues></_>
<_>
<internalNodes>
0 -1 83 -1.1916080256924033e-03</internalNodes>
<leafValues>
-7.2454470396041870e-01 3.9102268218994141e-01</leafValues></_>
<_>
<internalNodes>
0 -1 25 2.0082043192815036e-05</internalNodes>
<leafValues>
-5.3967922925949097e-01 5.1146519184112549e-01</leafValues></_>
<_>
<internalNodes>
0 -1 47 -1.8320022150874138e-02</internalNodes>
<leafValues>
4.8703080415725708e-01 -5.4964327812194824e-01</leafValues></_>
<_>
<internalNodes>
0 -1 68 -2.0031386520713568e-03</internalNodes>
<leafValues>
6.8501430749893188e-01 -4.5517250895500183e-01</leafValues></_></weakClassifiers></_>
<!-- stage 17 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-5.2246010303497314e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 65 3.7738837301731110e-02</internalNodes>
<leafValues>
-4.6428570151329041e-01 5.3846156597137451e-01</leafValues></_>
<_>
<internalNodes>
0 -1 69 1.9338093698024750e-02</internalNodes>
<leafValues>
-2.3995162546634674e-01 8.6997681856155396e-01</leafValues></_>
<_>
<internalNodes>
0 -1 40 -1.7748633399605751e-02</internalNodes>
<leafValues>
2.9347124695777893e-01 -8.7141019105911255e-01</leafValues></_>
<_>
<internalNodes>
0 -1 75 -4.1088531725108624e-04</internalNodes>
<leafValues>
-5.4844135046005249e-01 3.9945846796035767e-01</leafValues></_>
<_>
<internalNodes>
0 -1 41 -9.9394435528665781e-04</internalNodes>
<leafValues>
4.4342333078384399e-01 -5.1104700565338135e-01</leafValues></_></weakClassifiers></_>
<!-- stage 18 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-6.6410249471664429e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 74 1.6416510334238410e-04</internalNodes>
<leafValues>
-6.1038959026336670e-01 3.2743361592292786e-01</leafValues></_>
<_>
<internalNodes>
0 -1 5 3.8591945171356201e-01</internalNodes>
<leafValues>
-5.4808712005615234e-01 5.1844674348831177e-01</leafValues></_>
<_>
<internalNodes>
0 -1 16 1.1253848671913147e-01</internalNodes>
<leafValues>
2.3563538491725922e-01 -9.1672974824905396e-01</leafValues></_>
<_>
<internalNodes>
0 -1 35 6.0344949364662170e-02</internalNodes>
<leafValues>
-3.7015014886856079e-01 6.9913721084594727e-01</leafValues></_>
<_>
<internalNodes>
0 -1 63 -2.8770421631634235e-03</internalNodes>
<leafValues>
4.9642327427864075e-01 -4.7274038195610046e-01</leafValues></_>
<_>
<internalNodes>
0 -1 54 -1.4344233088195324e-02</internalNodes>
<leafValues>
3.4700763225555420e-01 -6.7273515462875366e-01</leafValues></_></weakClassifiers></_>
<!-- stage 19 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-5.3929042816162109e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 -1 18 -7.9699326306581497e-03</internalNodes>
<leafValues>
6.0655736923217773e-01 -3.6434108018875122e-01</leafValues></_>
<_>
<internalNodes>
0 -1 76 -2.8785979375243187e-03</internalNodes>
<leafValues>
4.4150066375732422e-01 -4.9263894557952881e-01</leafValues></_>
<_>
<internalNodes>
0 -1 52 1.3993790373206139e-02</internalNodes>
<leafValues>
-4.0179347991943359e-01 5.6640434265136719e-01</leafValues></_>
<_>
<internalNodes>
0 -1 13 2.2784352302551270e-02</internalNodes>
<leafValues>
-3.2130151987075806e-01 7.4265670776367188e-01</leafValues></_>
<_>
<internalNodes>
0 -1 29 -1.2712389230728149e-02</internalNodes>
<leafValues>
-8.6425346136093140e-01 3.1098249554634094e-01</leafValues></_></weakClassifiers></_></stages>
<features>
<_>
<rects>
<_>
0 0 2 19 -1.</_>
<_>
1 0 1 19 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 0 6 3 -1.</_>
<_>
3 0 3 3 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 0 16 1 -1.</_>
<_>
4 0 8 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 0 12 1 -1.</_>
<_>
6 0 6 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 0 12 9 -1.</_>
<_>
0 3 12 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 0 19 20 -1.</_>
<_>
0 5 19 10 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 0 19 14 -1.</_>
<_>
0 7 19 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 2 5 3 -1.</_>
<_>
0 3 5 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 4 12 12 -1.</_>
<_>
0 7 12 6 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 5 2 15 -1.</_>
<_>
1 5 1 15 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 7 2 13 -1.</_>
<_>
1 7 1 13 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 9 6 8 -1.</_>
<_>
0 13 6 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 10 9 8 -1.</_>
<_>
3 10 3 8 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 16 10 4 -1.</_>
<_>
0 16 5 2 2.</_>
<_>
5 18 5 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
0 19 2 1 -1.</_>
<_>
1 19 1 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 0 2 1 -1.</_>
<_>
1 0 1 1 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
1 4 18 16 -1.</_>
<_>
1 4 9 8 2.</_>
<_>
10 12 9 8 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
1 10 5 4 -1.</_>
<_>
1 11 5 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 2 3 3 -1.</_>
<_>
2 3 3 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 2 4 3 -1.</_>
<_>
2 3 4 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 3 2 8 -1.</_>
<_>
2 7 2 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 3 16 2 -1.</_>
<_>
6 3 8 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
2 7 4 4 -1.</_>
<_>
2 8 4 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 0 8 7 -1.</_>
<_>
7 0 4 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 3 8 16 -1.</_>
<_>
5 3 4 16 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 4 2 2 -1.</_>
<_>
3 4 1 1 2.</_>
<_>
4 5 1 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 7 14 13 -1.</_>
<_>
10 7 7 13 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 9 1 10 -1.</_>
<_>
3 14 1 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
3 14 15 3 -1.</_>
<_>
3 15 15 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 0 4 7 -1.</_>
<_>
5 0 2 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 1 16 6 -1.</_>
<_>
4 3 16 2 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 2 8 4 -1.</_>
<_>
8 2 4 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 3 16 1 -1.</_>
<_>
12 3 8 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 9 12 3 -1.</_>
<_>
8 10 4 1 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 10 3 1 -1.</_>
<_>
5 11 1 1 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
4 10 14 5 -1.</_>
<_>
11 10 7 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
4 15 1 4 -1.</_>
<_>
4 15 1 2 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
4 16 8 3 -1.</_>
<_>
4 17 8 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
5 6 4 5 -1.</_>
<_>
6 7 2 5 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
6 0 4 7 -1.</_>
<_>
8 0 2 7 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
6 3 4 6 -1.</_>
<_>
6 3 4 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
6 7 4 3 -1.</_>
<_>
5 8 4 1 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
6 16 11 3 -1.</_>
<_>
6 17 11 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 0 3 18 -1.</_>
<_>
7 9 3 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 0 5 2 -1.</_>
<_>
7 1 5 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 1 6 9 -1.</_>
<_>
9 1 2 9 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 1 6 10 -1.</_>
<_>
9 1 2 10 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 1 4 4 -1.</_>
<_>
6 2 4 2 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
7 4 6 16 -1.</_>
<_>
9 4 2 16 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 14 4 3 -1.</_>
<_>
7 15 4 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
7 14 10 5 -1.</_>
<_>
12 14 5 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
8 0 4 12 -1.</_>
<_>
9 0 2 12 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
8 3 4 5 -1.</_>
<_>
9 3 2 5 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
8 14 3 3 -1.</_>
<_>
7 15 3 1 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
9 0 1 8 -1.</_>
<_>
7 2 1 4 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
9 2 2 18 -1.</_>
<_>
9 11 2 9 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 2 8 3 -1.</_>
<_>
13 2 4 3 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 12 3 4 -1.</_>
<_>
9 13 3 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
9 18 4 2 -1.</_>
<_>
9 19 4 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
10 0 2 8 -1.</_>
<_>
8 2 2 4 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
10 8 6 4 -1.</_>
<_>
12 8 2 4 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
12 0 7 9 -1.</_>
<_>
12 3 7 3 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
12 1 7 6 -1.</_>
<_>
12 3 7 2 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
14 1 1 4 -1.</_>
<_>
14 3 1 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
14 2 6 3 -1.</_>
<_>
16 3 2 1 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
14 2 2 8 -1.</_>
<_>
14 6 2 4 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
14 3 6 12 -1.</_>
<_>
16 7 2 4 9.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
14 7 3 3 -1.</_>
<_>
14 8 3 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
14 15 4 2 -1.</_>
<_>
14 16 4 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 0 4 4 -1.</_>
<_>
15 1 4 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 2 2 3 -1.</_>
<_>
15 3 2 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
15 4 1 9 -1.</_>
<_>
12 7 1 3 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
16 8 1 4 -1.</_>
<_>
16 9 1 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 8 4 3 -1.</_>
<_>
15 9 4 1 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
16 11 4 1 -1.</_>
<_>
17 11 2 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 12 2 4 -1.</_>
<_>
16 12 1 2 2.</_>
<_>
17 14 1 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 18 4 2 -1.</_>
<_>
18 18 2 2 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
16 19 4 1 -1.</_>
<_>
18 19 2 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
17 0 3 20 -1.</_>
<_>
17 5 3 10 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
17 2 1 12 -1.</_>
<_>
13 6 1 4 3.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
17 6 1 2 -1.</_>
<_>
17 7 1 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
17 6 2 6 -1.</_>
<_>
17 6 2 3 2.</_></rects>
<tilted>1</tilted></_>
<_>
<rects>
<_>
17 10 1 2 -1.</_>
<_>
17 11 1 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
17 11 1 3 -1.</_>
<_>
17 12 1 1 3.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
17 11 2 2 -1.</_>
<_>
17 12 2 1 2.</_></rects>
<tilted>0</tilted></_>
<_>
<rects>
<_>
19 0 1 2 -1.</_>
<_>
19 1 1 1 2.</_></rects>
<tilted>0</tilted></_></features></cascade>
</opencv_storage>