import "jsr:@supabase/functions-js/edge-runtime.d.ts"; import { createClient } from "jsr:@supabase/supabase-js@2"; import { Database } from "../_shared/database.types.ts"; const supabase = createClient( Deno.env.get("SUPABASE_URL")!, Deno.env.get("SUPABASE_SERVICE_ROLE_KEY")!, ); const model = new Supabase.ai.Session("gte-small"); Deno.serve(async (req) => { const { search } = await req.json(); if (!search) return new Response("Please provide a search param!"); // Generate embedding for search term. const embedding = await model.run(search, { mean_pool: true, normalize: true, }); // Query embeddings. const { data: result, error } = await supabase .rpc("query_embeddings", { embedding: JSON.stringify(embedding), match_threshold: 0.8, }) .select("content") .limit(3); if (error) { return Response.json(error); } return Response.json({ search, result }); }); /* To invoke locally: 1. Run `supabase start` (see: https://supabase.com/docs/reference/cli/supabase-start) 2. Run `supabase functions serve` 3. Make an HTTP request: curl -i --location --request POST 'http://127.0.0.1:54321/functions/v1/search' \ --header 'Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZS1kZW1vIiwicm9sZSI6ImFub24iLCJleHAiOjE5ODM4MTI5OTZ9.CRXP1A7WOeoJeXxjNni43kdQwgnWNReilDMblYTn_I0' \ --header 'Content-Type: application/json' \ --data '{"search":"vehicles"}' */