update,
This commit is contained in:
114
1st_copy/NOTES.md
Normal file
114
1st_copy/NOTES.md
Normal file
@@ -0,0 +1,114 @@
|
||||
### objective
|
||||
|
||||
env: Windows
|
||||
deadline 23/12
|
||||
|
||||
|
||||
### CAUTION
|
||||
Do not include any code not written by you in your
|
||||
project. You are NOT allowed to import any Python libraries in your solution except the
|
||||
modules namely os (https://docs.python.org/3/library/os.html), sys
|
||||
(https://docs.python.org/3/library/sys.html) and csv (https://docs.python.org/3/library/csv.html). If
|
||||
cheating is found or the import requirement is violated, you will receive a zero mark.
|
||||
|
||||
|
||||
### Deliverable
|
||||
You have to include your student name and ID in your source code and name your project solution as
|
||||
“XXXXXXXX_project.py” (where XXXXXXXX is your 8-digit student ID). Please remember to
|
||||
upload your source code solution to Moodle by the submission deadline.
|
||||
|
||||
|
||||
### drill down
|
||||
|
||||
Functions
|
||||
Given the file of stock prices, you are asked to develop a Python program to process the data by
|
||||
designing appropriate functions. At minimum you need to implement and call the following three
|
||||
functions:
|
||||
• get_data_list(csv_file_name)
|
||||
This function has one parameter, namely csv_file_name. When the function is called, you
|
||||
need to pass along a CSV file name which is used inside the function to open and read the CSV
|
||||
file. After reading each row, it will be split into a list. The list will then be appended into a main
|
||||
list (a list of lists), namely data_list. The data_list will be returned at the end of the
|
||||
function.
|
||||
2
|
||||
• get_monthly_averages(data_list)
|
||||
This function has one parameter, namely data_list. You need to pass the data_list
|
||||
generated by the get_data_list() function as the argument to this function and then
|
||||
calculate the monthly average prices of the stock. The average monthly prices are calculated in
|
||||
the following way. Suppose the volume and adjusted closing price of a trading day are V1 and C1,
|
||||
respectively. The total sale of that day equals V1 x C1. Now, suppose the volume and adjusted
|
||||
closing price of another trading day are V2 and C2, respectively. The average of these two trading
|
||||
days is the sum of the total sales divided by the total volume:
|
||||
Average price = (V1 x C1 + V2 x C2) / (V1 + V2)
|
||||
To average a whole month, you need to add up the total sales (V1 x C1 + V2 x C2 + ... +
|
||||
Vn x Cn) for each day and divide it by the sum of all volumes (V1 + V2 + ... + Vn) where n
|
||||
is the number of trading days in the month.
|
||||
A tuple with 2 items, including the date (year and month only) and the average for that month,
|
||||
will be generated for each month. The tuple for each month will be appended to a main list,
|
||||
namely monthly_averages_list. The monthly_averages_list will be returned at
|
||||
the end of the function.
|
||||
• get_moving_averages(monthly_averages_list)
|
||||
This function has one parameter, namely monthly_averages_list. You need to pass the
|
||||
monthly_averages_list generated by get_monthly_averages() as the argument
|
||||
to this function and then calculate the 5-month exponential moving average (EMA) stock prices.
|
||||
In general, the EMA for a particular month can be calculated by the following formula:
|
||||
EMA = (Monthly average price – previous month’s EMA) x smoothing constant
|
||||
+ previous month’s EMA
|
||||
where
|
||||
smoothing constant = 2 / (number of time periods in months + 1)
|
||||
3
|
||||
For example, the following table shows the stock prices between Oct 2020 and Apr 2021:
|
||||
Month Monthly Average Price
|
||||
Oct 2020 14
|
||||
Nov 2020 13
|
||||
Dec 2020 14
|
||||
Jan 2021 12
|
||||
Feb 2021 13
|
||||
Mar 2021 12
|
||||
Apr 2021 11
|
||||
The initial 5-month EMA for Feb 2021 can be calculated by the simple average formula, as
|
||||
shown below:
|
||||
5-month EMA for Feb 2021 = (14 + 13 + 14 + 12 + 13) / 5 = 13.2
|
||||
The 5-month EMA for Mar 2021 can be calculated by the EMA formula, as shown below:
|
||||
5-month EMA for Mar 2021 = (Monthly average price – previous month’s EMA) x
|
||||
smoothing constant + previous month’s EMA
|
||||
= (12 – 13.2) x (2 / 6) + 13.2
|
||||
= 12.8
|
||||
The 5-month EMA for Apr 2021 can be calculated by the EMA formula, as shown below:
|
||||
5-month EMA for Apr 2021 = (Monthly average price – previous month’s EMA) x
|
||||
smoothing constant + previous month’s EMA
|
||||
= (11 – 12.8) x (2 / 6) + 12.8
|
||||
= 12.2
|
||||
The resulting 5-month EMA stock prices are shown below:
|
||||
Month Average Price 5-month EMA Price
|
||||
Oct 2020 14 -
|
||||
Nov 2020 13 -
|
||||
Dec 2020 14 -
|
||||
Jan 2021 12 -
|
||||
Feb 2021 13 13.2
|
||||
Mar 2021 12 12.8
|
||||
Apr 2021 11 12.2
|
||||
4
|
||||
A tuple with 2 items, including the date (year and month only) and the 5-month EMA price for
|
||||
that month, will be generated for each month except the first 4 months. Each tuple will be
|
||||
appended to a main list, namely moving_averages_list. The
|
||||
moving_averages_list will be returned at the end of the function.
|
||||
|
||||
|
||||
Program Input and Output
|
||||
At the outset, your program needs to ask the user for a CSV file name:
|
||||
Based on the entered CSV file name, a corresponding output text file (e.g. “Google_output.txt”
|
||||
for this case) will be generated. In the output file, you are eventually required to print the best month
|
||||
(with the highest EMA price) and the worst month (with the lowest EMA price) for the stock. You
|
||||
need to first print a header line for the stock, and then print a date (MM-YYYY), a comma followed by
|
||||
a moving average price (in 2 decimal places) on another line. You must follow the output format as
|
||||
shown below (please note the values are not true, which are for reference only)
|
||||
|
||||
|
||||
IV. Evaluation Criteria (40% of Overall Course Assessment)
|
||||
The project will be graded using the following criteria:
|
||||
• 15% - Correctness of program execution and output data
|
||||
• 10% - Modularization (e.g. dividing the program functionality into different functions)
|
||||
• 5% - Error handling
|
||||
• 5% - Consistent style (e.g., capitalization, indenting, etc.)
|
||||
• 5% - Appropriate comments
|
Binary file not shown.
1031
1st_copy/_ref/google.csv
Normal file
1031
1st_copy/_ref/google.csv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
1st_copy/_ref/steps.ods
Normal file
BIN
1st_copy/_ref/steps.ods
Normal file
Binary file not shown.
15
1st_copy/_ref/test.csv
Normal file
15
1st_copy/_ref/test.csv
Normal file
@@ -0,0 +1,15 @@
|
||||
Date,Open,High,Low,Close,Adj Close,Volume
|
||||
2008-07-04,460,463.24,449.4,450.26,450.26,4848500
|
||||
2008-07-03,468.73,474.29,459.58,464.41,464.41,4314600
|
||||
2008-06-02,476.77,482.18,461.42,465.25,465.25,6111500
|
||||
2008-06-29,469.75,471.01,462.33,463.29,463.29,3848200
|
||||
2008-05-08,452.02,452.94,417.55,419.95,419.95,9017900
|
||||
2008-05-05,445.49,452.46,440.08,444.25,444.25,4534300
|
||||
2008-04-04,460,463.24,449.4,450.26,450.26,4848500
|
||||
2008-04-03,468.73,474.29,459.58,464.41,464.41,4314600
|
||||
2008-03-02,476.77,482.18,461.42,465.25,465.25,6111500
|
||||
2008-03-29,469.75,471.01,462.33,463.29,463.29,3848200
|
||||
2008-02-28,472.49,476.45,470.33,473.78,473.78,3029700
|
||||
2008-02-27,473.73,474.83,464.84,468.58,468.58,4387100
|
||||
2008-01-28,472.49,476.45,470.33,473.78,473.78,3029700
|
||||
2008-01-27,473.73,474.83,464.84,468.58,468.58,4387100
|
|
16
1st_copy/build.sh
Normal file
16
1st_copy/build.sh
Normal file
@@ -0,0 +1,16 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
rm -rf _temp/*
|
||||
rm -rf delivery.zip
|
||||
|
||||
mkdir -p _temp
|
||||
|
||||
set -ex
|
||||
|
||||
cp src/main.py _temp/XXXXXXXX_project.py
|
||||
|
||||
pushd _temp
|
||||
7za a -tzip ../delivery1.zip *
|
||||
popd
|
||||
|
||||
rm -rf _temp
|
11
1st_copy/src/Pipfile
Normal file
11
1st_copy/src/Pipfile
Normal file
@@ -0,0 +1,11 @@
|
||||
[[source]]
|
||||
url = "https://pypi.org/simple"
|
||||
verify_ssl = true
|
||||
name = "pypi"
|
||||
|
||||
[packages]
|
||||
|
||||
[dev-packages]
|
||||
|
||||
[requires]
|
||||
python_version = "3.11"
|
243
1st_copy/src/main.py
Normal file
243
1st_copy/src/main.py
Normal file
@@ -0,0 +1,243 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Do not include any code not written by you in your project.
|
||||
# You are NOT allowed to import any Python libraries in your solution except the modules namely
|
||||
# - os (https://docs.python.org/3/library/os.html),
|
||||
# - sys (https://docs.python.org/3/library/sys.html) and
|
||||
# - csv (https://docs.python.org/3/library/csv.html).
|
||||
#
|
||||
# If cheating is found or the import requirement is violated, you will receive a zero mark.
|
||||
|
||||
import os,sys, csv
|
||||
|
||||
# column from csv file
|
||||
# COL_DATE: the day of trading
|
||||
# COL_OPEN: the stock price at the beginning of the trading day
|
||||
# COL_HIGH: the highest price the stock achieved on the trading day
|
||||
# COL_LOW: the lowest price the stock achieved on the trading day
|
||||
# COL_CLOSE: the stock price at the end of the trading day
|
||||
# COL_ADJ_Close: the adjusted closing price of the trading day (reflecting the stock’s value after accounting for any corporate actions like dividends, stock splits and new stock offerings)
|
||||
# COL_VOLUME: the total number of shares were traded on the trading day
|
||||
COL_DATE=0
|
||||
COL_OPEN=1
|
||||
COL_HIGH=2
|
||||
COL_LOW=3
|
||||
COL_CLOSE=4
|
||||
COL_ADJ_CLOSE=5
|
||||
COL_VOLUME=6
|
||||
|
||||
# append at middle stage
|
||||
COL_TOTAL_SALE_OF_DAY=7
|
||||
COL_MONTH_ONLY=8
|
||||
COL_EMA=9
|
||||
|
||||
# monthly_averages_list
|
||||
COL_MONTHLY_AVERAGE_PRICE=1
|
||||
COL_EMA=2
|
||||
|
||||
|
||||
# get_data_list(csv_file_name)
|
||||
# This function has one parameter, namely csv_file_name.
|
||||
# When the function is called, you need to pass along a CSV file name which is used inside the function to open and read the CSV
|
||||
# file.
|
||||
# After reading each row, it will be split into a list. The list will then be appended into a main
|
||||
# list (a list of lists), namely data_list. The data_list will be returned at the end of the
|
||||
# function.
|
||||
def get_data_list(csv_file_name):
|
||||
'''read data list from csv file'''
|
||||
data_list = []
|
||||
try:
|
||||
with open(csv_file_name, newline='') as csvfile:
|
||||
temp = []
|
||||
temp = csv.reader(csvfile, delimiter=',', quotechar='"')
|
||||
data_list = list(temp)
|
||||
|
||||
return data_list
|
||||
except Exception as e:
|
||||
print('error during reading csv file ')
|
||||
print('exitting...')
|
||||
sys.exit()
|
||||
|
||||
|
||||
# get_monthly_averages(data_list)
|
||||
# This function has one parameter, namely data_list. You need to pass the data_list
|
||||
# generated by the get_data_list() function as the argument to this function and then
|
||||
# calculate the monthly average prices of the stock. The average monthly prices are calculated in
|
||||
# the following way.
|
||||
#
|
||||
# 1. Suppose the volume and adjusted closing price of a trading day are V1 and C1, respectively.
|
||||
# 2. The total sale of that day equals V1 x C1.
|
||||
# 3. Now, suppose the volume and adjusted closing price of another trading day are V2 and C2, respectively.
|
||||
# 4. The average of these two trading days is the sum of the total sales divided by the total volume:
|
||||
#
|
||||
# Average price = (V1 x C1 + V2 x C2) / (V1 + V2)
|
||||
#
|
||||
# To average a whole month, you need to
|
||||
# - add up the total sales (V1 x C1 + V2 x C2 + ... + Vn x Cn) for each day and
|
||||
# - divide it by the sum of all volumes (V1 + V2 + ... + Vn) where n is the number of trading days in the month.
|
||||
# A tuple with 2 items, including the date (year and month only) and the average for that month,
|
||||
# will be generated for each month. The tuple for each month will be appended to a main list,
|
||||
# namely monthly_averages_list. The monthly_averages_list will be returned at the end of the function.
|
||||
|
||||
def get_monthly_averages(data_list):
|
||||
'''calculate the monthly average prices of the stock'''
|
||||
|
||||
monthly_averages_list=[]
|
||||
data_list_data_only = data_list[1:]
|
||||
month_available = []
|
||||
|
||||
# data cleaning
|
||||
for i in range(len(data_list_data_only)):
|
||||
# V1 x C1, calculate the total sale, append into column
|
||||
data_list_data_only[i].append(float(data_list_data_only[i][COL_VOLUME]) * float(data_list_data_only[i][COL_ADJ_CLOSE]))
|
||||
|
||||
# mark the row by YYYY-MM for easy monthly sum calculation, COL_MONTH_ONLY
|
||||
data_list_data_only[i].append(data_list_data_only[i][COL_DATE][0:7])
|
||||
|
||||
# get the month in the list YYYY-MM
|
||||
month_available = set(list(map(lambda x: x[COL_MONTH_ONLY], data_list_data_only)))
|
||||
|
||||
# literate the whole list, calculate the total_sale and total volume
|
||||
# get the average sale by total_sale / total_volume
|
||||
for month in sorted(month_available):
|
||||
filtered_month = list(filter(lambda x: x[COL_MONTH_ONLY] == month, data_list_data_only))
|
||||
total_sale = sum(list( map(lambda x: x[COL_TOTAL_SALE_OF_DAY], filtered_month)))
|
||||
total_volume = sum(list( map(lambda x: float(x[COL_VOLUME]), filtered_month)))
|
||||
monthly_averages_list.append([month, total_sale/total_volume])
|
||||
|
||||
return list(monthly_averages_list)
|
||||
|
||||
# get_moving_averages(monthly_averages_list)
|
||||
# This function has one parameter, namely monthly_averages_list. You need to pass the
|
||||
# monthly_averages_list generated by get_monthly_averages() as the argument
|
||||
# to this function and then calculate the 5-month exponential moving average (EMA) stock prices.
|
||||
# In general, the EMA for a particular month can be calculated by the following formula:
|
||||
#
|
||||
# EMA = (Monthly average price – previous month’s EMA) x smoothing constant + previous month’s EMA
|
||||
#
|
||||
# where
|
||||
#
|
||||
# smoothing constant = 2 / (number of time periods in months + 1)
|
||||
#
|
||||
# Initial SMA = 20-period sum / 20
|
||||
# Multiplier = (2 / (Time periods + 1) ) = (2 / (20 + 1) ) = 0.0952(9.52%)
|
||||
# EMA = {Close – EMA(previous day)} x multiplier + EMA(previous day).
|
||||
def get_moving_averages(monthly_averages_list):
|
||||
'''
|
||||
get moving averages from montyly_average_list
|
||||
input:
|
||||
[ [YYYY-MM, monthly average price],
|
||||
[YYYY-MM, monthly average price],
|
||||
...]
|
||||
|
||||
output:
|
||||
[ [YYYY-MM, monthly average price, EMA],
|
||||
[YYYY-MM, monthly average price, EMA],
|
||||
...]
|
||||
'''
|
||||
|
||||
# by ref, the first 5 month EMA were given by SMA
|
||||
monthly_averages_list[0].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)
|
||||
monthly_averages_list[1].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)
|
||||
monthly_averages_list[2].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)
|
||||
monthly_averages_list[3].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)
|
||||
monthly_averages_list[4].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)
|
||||
|
||||
# smoothing constant = 2 / (number of time periods in months + 1)
|
||||
smoothing_constant = 2 / (5 + 1)
|
||||
|
||||
# main loop to calculate EMA, start from the 6th month available till the end of the list
|
||||
for i in range(5, len(monthly_averages_list)):
|
||||
previous_month_EMA = monthly_averages_list[i-1][2]
|
||||
Monthly_average_price = monthly_averages_list[i][1]
|
||||
|
||||
EMA = (Monthly_average_price - previous_month_EMA) * smoothing_constant + previous_month_EMA
|
||||
monthly_averages_list[i].append(EMA)
|
||||
|
||||
return monthly_averages_list
|
||||
|
||||
# Based on the entered CSV file name, a corresponding output text file (e.g. “Google_output.txt” for this case) will be generated.
|
||||
# In the output file, you are eventually required to print:
|
||||
# - the best month (with the highest EMA price) and
|
||||
# - the worst month (with the lowest EMA price) for the stock.
|
||||
# You need to first print a header line for the stock, and then print a date (MM-YYYY),
|
||||
# a comma followed by a moving average price (in 2 decimal places) on another line.
|
||||
def format_date_string(yyyy_mm):
|
||||
'''rearrange date string from csv file YYYY-MM => MM-YYYY'''
|
||||
[yyyy, mm] = yyyy_mm.split('-')
|
||||
return '-'.join([mm, yyyy])
|
||||
|
||||
def write_output_file(filename_to_write, monthly_averages_list_w_ema, report_name):
|
||||
'''get output string from template and write to output file
|
||||
input:
|
||||
filename_to_write: txt file name with path to be written to
|
||||
monthly_averages_list_w_ema: list provided with EMA
|
||||
report_name: report name to be written to report
|
||||
'''
|
||||
|
||||
RESULT_TEMPLATE='''
|
||||
# The best month for ^report_name^:
|
||||
# ^best_month^, ^best_EMA^
|
||||
|
||||
# The worst month for ^report_name^:
|
||||
# ^worst_month^, ^worst_EMA^
|
||||
'''.strip()
|
||||
|
||||
# get the max EMA of the list
|
||||
best_EMA = max(map(lambda x: x[2], monthly_averages_list_w_ema[5:]))
|
||||
# get the month(s) by the EMA wanted
|
||||
best_months = list(map(lambda x: format_date_string(x[0]), filter(lambda x: x[2] == best_EMA, monthly_averages_list_w_ema[5:])))
|
||||
|
||||
# get the min(worst) EMA of the list
|
||||
worst_EMA = min(map(lambda x: x[2], monthly_averages_list_w_ema[5:]))
|
||||
# get the month(s) by the EMA wanted
|
||||
worst_months = list(map(lambda x: format_date_string(x[0]), filter(lambda x: x[2] == worst_EMA, monthly_averages_list_w_ema[5:])))
|
||||
|
||||
# assemble the output string
|
||||
result_string = RESULT_TEMPLATE
|
||||
result_string = result_string\
|
||||
.replace('^best_month^', ','.join(best_months))\
|
||||
.replace('^best_EMA^', str('%.2f' % best_EMA))\
|
||||
.replace('^worst_month^', ','.join(worst_months))\
|
||||
.replace('^worst_EMA^', str('%.2f' % worst_EMA)) \
|
||||
.replace('^report_name^', report_name)
|
||||
|
||||
# write output file
|
||||
with open(filename_to_write, 'w+') as file_write:
|
||||
file_write.truncate(0)
|
||||
file_write.writelines(result_string)
|
||||
|
||||
def main():
|
||||
# Main function starts here
|
||||
|
||||
print('start')
|
||||
|
||||
# gather csv file with path from user
|
||||
input_filename = input("Please input a csv filename: ")
|
||||
|
||||
csv_filename = os.path.basename(input_filename)
|
||||
csv_path = os.path.dirname(input_filename)
|
||||
|
||||
# transform to the output file path by csv file name got
|
||||
txt_filename = csv_filename.replace('.csv','_output.txt')
|
||||
if (csv_path != ''):
|
||||
txt_filename = '/'.join([csv_path, txt_filename])
|
||||
else:
|
||||
# by default keep into current directory
|
||||
txt_filename = '/'.join(['.', txt_filename])
|
||||
|
||||
# grep the corp_name from the filename google.csv => google
|
||||
corp_name = os.path.basename(input_filename).split('.')[0]
|
||||
|
||||
# process the data_list by csv file as stateed in assignment
|
||||
print(f'processing {csv_filename}')
|
||||
csv_list=get_data_list(input_filename)
|
||||
monthly_averages_list = get_monthly_averages(csv_list)
|
||||
monthly_averages_list_w_EMA = get_moving_averages(monthly_averages_list)
|
||||
|
||||
# write output file
|
||||
write_output_file(txt_filename, monthly_averages_list_w_EMA, corp_name)
|
||||
print('wrote to {file} done'.format(file = txt_filename))
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
6
1st_copy/src/test.sh
Normal file
6
1st_copy/src/test.sh
Normal file
@@ -0,0 +1,6 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
|
||||
python3 ./main.py
|
112
2nd_copy/NOTES.md
Normal file
112
2nd_copy/NOTES.md
Normal file
@@ -0,0 +1,112 @@
|
||||
### objective
|
||||
|
||||
env: Windows
|
||||
deadline 23/12
|
||||
|
||||
### CAUTION
|
||||
|
||||
Do not include any code not written by you in your
|
||||
project. You are NOT allowed to import any Python libraries in your solution except the
|
||||
modules namely os (https://docs.python.org/3/library/os.html), sys
|
||||
(https://docs.python.org/3/library/sys.html) and csv (https://docs.python.org/3/library/csv.html). If
|
||||
cheating is found or the import requirement is violated, you will receive a zero mark.
|
||||
|
||||
### Deliverable
|
||||
|
||||
You have to include your student name and ID in your source code and name your project solution as
|
||||
“XXXXXXXX_project.py” (where XXXXXXXX is your 8-digit student ID). Please remember to
|
||||
upload your source code solution to Moodle by the submission deadline.
|
||||
|
||||
### drill down
|
||||
|
||||
Functions
|
||||
Given the file of stock prices, you are asked to develop a Python program to process the data by
|
||||
designing appropriate functions. At minimum you need to implement and call the following three
|
||||
functions:
|
||||
• get_data_list(csv_file_name)
|
||||
This function has one parameter, namely csv_file_name. When the function is called, you
|
||||
need to pass along a CSV file name which is used inside the function to open and read the CSV
|
||||
file. After reading each row, it will be split into a list. The list will then be appended into a main
|
||||
list (a list of lists), namely data_list. The data_list will be returned at the end of the
|
||||
function.
|
||||
2
|
||||
• get_monthly_averages(data_list)
|
||||
This function has one parameter, namely data_list. You need to pass the data_list
|
||||
generated by the get_data_list() function as the argument to this function and then
|
||||
calculate the monthly average prices of the stock. The average monthly prices are calculated in
|
||||
the following way. Suppose the volume and adjusted closing price of a trading day are V1 and C1,
|
||||
respectively. The total sale of that day equals V1 x C1. Now, suppose the volume and adjusted
|
||||
closing price of another trading day are V2 and C2, respectively. The average of these two trading
|
||||
days is the sum of the total sales divided by the total volume:
|
||||
Average price = (V1 x C1 + V2 x C2) / (V1 + V2)
|
||||
To average a whole month, you need to add up the total sales (V1 x C1 + V2 x C2 + ... +
|
||||
Vn x Cn) for each day and divide it by the sum of all volumes (V1 + V2 + ... + Vn) where n
|
||||
is the number of trading days in the month.
|
||||
A tuple with 2 items, including the date (year and month only) and the average for that month,
|
||||
will be generated for each month. The tuple for each month will be appended to a main list,
|
||||
namely monthly_averages_list. The monthly_averages_list will be returned at
|
||||
the end of the function.
|
||||
• get_moving_averages(monthly_averages_list)
|
||||
This function has one parameter, namely monthly_averages_list. You need to pass the
|
||||
monthly_averages_list generated by get_monthly_averages() as the argument
|
||||
to this function and then calculate the 5-month exponential moving average (EMA) stock prices.
|
||||
In general, the EMA for a particular month can be calculated by the following formula:
|
||||
EMA = (Monthly average price – previous month’s EMA) x smoothing constant
|
||||
|
||||
- previous month’s EMA
|
||||
where
|
||||
smoothing constant = 2 / (number of time periods in months + 1)
|
||||
3
|
||||
For example, the following table shows the stock prices between Oct 2020 and Apr 2021:
|
||||
Month Monthly Average Price
|
||||
Oct 2020 14
|
||||
Nov 2020 13
|
||||
Dec 2020 14
|
||||
Jan 2021 12
|
||||
Feb 2021 13
|
||||
Mar 2021 12
|
||||
Apr 2021 11
|
||||
The initial 5-month EMA for Feb 2021 can be calculated by the simple average formula, as
|
||||
shown below:
|
||||
5-month EMA for Feb 2021 = (14 + 13 + 14 + 12 + 13) / 5 = 13.2
|
||||
The 5-month EMA for Mar 2021 can be calculated by the EMA formula, as shown below:
|
||||
5-month EMA for Mar 2021 = (Monthly average price – previous month’s EMA) x
|
||||
smoothing constant + previous month’s EMA
|
||||
= (12 – 13.2) x (2 / 6) + 13.2
|
||||
= 12.8
|
||||
The 5-month EMA for Apr 2021 can be calculated by the EMA formula, as shown below:
|
||||
5-month EMA for Apr 2021 = (Monthly average price – previous month’s EMA) x
|
||||
smoothing constant + previous month’s EMA
|
||||
= (11 – 12.8) x (2 / 6) + 12.8
|
||||
= 12.2
|
||||
The resulting 5-month EMA stock prices are shown below:
|
||||
Month Average Price 5-month EMA Price
|
||||
Oct 2020 14 -
|
||||
Nov 2020 13 -
|
||||
Dec 2020 14 -
|
||||
Jan 2021 12 -
|
||||
Feb 2021 13 13.2
|
||||
Mar 2021 12 12.8
|
||||
Apr 2021 11 12.2
|
||||
4
|
||||
A tuple with 2 items, including the date (year and month only) and the 5-month EMA price for
|
||||
that month, will be generated for each month except the first 4 months. Each tuple will be
|
||||
appended to a main list, namely moving_averages_list. The
|
||||
moving_averages_list will be returned at the end of the function.
|
||||
|
||||
Program Input and Output
|
||||
At the outset, your program needs to ask the user for a CSV file name:
|
||||
Based on the entered CSV file name, a corresponding output text file (e.g. “Google_output.txt”
|
||||
for this case) will be generated. In the output file, you are eventually required to print the best month
|
||||
(with the highest EMA price) and the worst month (with the lowest EMA price) for the stock. You
|
||||
need to first print a header line for the stock, and then print a date (MM-YYYY), a comma followed by
|
||||
a moving average price (in 2 decimal places) on another line. You must follow the output format as
|
||||
shown below (please note the values are not true, which are for reference only)
|
||||
|
||||
IV. Evaluation Criteria (40% of Overall Course Assessment)
|
||||
The project will be graded using the following criteria:
|
||||
• 15% - Correctness of program execution and output data
|
||||
• 10% - Modularization (e.g. dividing the program functionality into different functions)
|
||||
• 5% - Error handling
|
||||
• 5% - Consistent style (e.g., capitalization, indenting, etc.)
|
||||
• 5% - Appropriate comments
|
Binary file not shown.
1031
2nd_copy/_ref/google.csv
Normal file
1031
2nd_copy/_ref/google.csv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
2nd_copy/_ref/steps.ods
Normal file
BIN
2nd_copy/_ref/steps.ods
Normal file
Binary file not shown.
15
2nd_copy/_ref/test.csv
Normal file
15
2nd_copy/_ref/test.csv
Normal file
@@ -0,0 +1,15 @@
|
||||
Date,Open,High,Low,Close,Adj Close,Volume
|
||||
2008-07-04,460,463.24,449.4,450.26,450.26,4848500
|
||||
2008-07-03,468.73,474.29,459.58,464.41,464.41,4314600
|
||||
2008-06-02,476.77,482.18,461.42,465.25,465.25,6111500
|
||||
2008-06-29,469.75,471.01,462.33,463.29,463.29,3848200
|
||||
2008-05-08,452.02,452.94,417.55,419.95,419.95,9017900
|
||||
2008-05-05,445.49,452.46,440.08,444.25,444.25,4534300
|
||||
2008-04-04,460,463.24,449.4,450.26,450.26,4848500
|
||||
2008-04-03,468.73,474.29,459.58,464.41,464.41,4314600
|
||||
2008-03-02,476.77,482.18,461.42,465.25,465.25,6111500
|
||||
2008-03-29,469.75,471.01,462.33,463.29,463.29,3848200
|
||||
2008-02-28,472.49,476.45,470.33,473.78,473.78,3029700
|
||||
2008-02-27,473.73,474.83,464.84,468.58,468.58,4387100
|
||||
2008-01-28,472.49,476.45,470.33,473.78,473.78,3029700
|
||||
2008-01-27,473.73,474.83,464.84,468.58,468.58,4387100
|
|
16
2nd_copy/build.sh
Normal file
16
2nd_copy/build.sh
Normal file
@@ -0,0 +1,16 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
rm -rf _temp/*
|
||||
rm -rf delivery2.zip
|
||||
|
||||
mkdir -p _temp
|
||||
|
||||
set -ex
|
||||
|
||||
cp src/main.py _temp/XXXXXXXX_project.py
|
||||
|
||||
pushd _temp
|
||||
7za a -tzip ../delivery2.zip *
|
||||
popd
|
||||
|
||||
rm -rf _temp
|
11
2nd_copy/src/Pipfile
Normal file
11
2nd_copy/src/Pipfile
Normal file
@@ -0,0 +1,11 @@
|
||||
[[source]]
|
||||
url = "https://pypi.org/simple"
|
||||
verify_ssl = true
|
||||
name = "pypi"
|
||||
|
||||
[packages]
|
||||
|
||||
[dev-packages]
|
||||
|
||||
[requires]
|
||||
python_version = "3.11"
|
262
2nd_copy/src/main.py
Normal file
262
2nd_copy/src/main.py
Normal file
@@ -0,0 +1,262 @@
|
||||
# Objective:
|
||||
# This scripts aims to analyze the historical prices of a stock
|
||||
import os
|
||||
import sys
|
||||
import csv
|
||||
|
||||
# define error constant
|
||||
CSV_FILE_NOT_FOUND='csv_file_not_found'
|
||||
|
||||
# column assignment by CSV definition
|
||||
[ C_DATE,
|
||||
C_OPEN,
|
||||
C_HIGH,
|
||||
C_LOW,
|
||||
C_CLOSE,
|
||||
C_ADJ_CLOSE,
|
||||
C_VOLUME,
|
||||
C_MONTH_AVG_PRICE,
|
||||
C_EMA
|
||||
] = list(range(0,8+1))
|
||||
|
||||
# NOTE: get_data_list(csv_file_name)
|
||||
# NOTE: This function has one parameter, namely csv_file_name.
|
||||
# NOTE: When the function is called, you need to pass along a CSV file name which is used inside the function to open and read the CSV
|
||||
# NOTE: file.
|
||||
# NOTE: After reading each row, it will be split into a list. The list will then be appended into a main
|
||||
# NOTE: list (a list of lists), namely data_list. The data_list will be returned at the end of the
|
||||
# NOTE: function.
|
||||
|
||||
# NOTE: file tested found as protected by outer try except structure
|
||||
def clean_data(data_list):
|
||||
"""clean and bloat data"""
|
||||
|
||||
out_list = []
|
||||
for data in sorted(data_list):
|
||||
out_list.append([
|
||||
data[C_DATE],
|
||||
float(data[C_OPEN]),
|
||||
float(data[C_HIGH]),
|
||||
float(data[C_LOW]),
|
||||
float(data[C_CLOSE]),
|
||||
float(data[C_ADJ_CLOSE]),
|
||||
float(data[C_VOLUME]),
|
||||
])
|
||||
return out_list
|
||||
|
||||
def get_data_list(csv_file_name):
|
||||
'''parse csv file, bloat it into list object'''
|
||||
|
||||
data_list = []
|
||||
with open(csv_file_name, newline='') as f_csv:
|
||||
data_list = list(csv.reader(f_csv, delimiter=',', quotechar='"'))
|
||||
|
||||
# NOTE: skip the very first row as that is names
|
||||
# NOTE: bloat the column accordingly
|
||||
return clean_data(data_list[1:])
|
||||
|
||||
# NOTE: get_monthly_averages(data_list)
|
||||
# NOTE: This function has one parameter, namely data_list. You need to pass the data_list
|
||||
# NOTE: generated by the get_data_list() function as the argument to this function and then
|
||||
# NOTE: calculate the monthly average prices of the stock. The average monthly prices are calculated in
|
||||
# NOTE: the following way.
|
||||
# NOTE:
|
||||
# NOTE: 1. Suppose the volume and adjusted closing price of a trading day are V1 and C1, respectively.
|
||||
# NOTE: 2. The total sale of that day equals V1 x C1.
|
||||
# NOTE: 3. Now, suppose the volume and adjusted closing price of another trading day are V2 and C2, respectively.
|
||||
# NOTE: 4. The average of these two trading days is the sum of the total sales divided by the total volume:
|
||||
# NOTE:
|
||||
# NOTE: Average price = (V1 x C1 + V2 x C2) / (V1 + V2)
|
||||
# NOTE:
|
||||
# NOTE: To average a whole month, you need to
|
||||
# NOTE: - add up the total sales (V1 x C1 + V2 x C2 + ... + Vn x Cn) for each day and
|
||||
# NOTE: - divide it by the sum of all volumes (V1 + V2 + ... + Vn) where n is the number of trading days in the month.
|
||||
# NOTE: A tuple with 2 items, including the date (year and month only) and the average for that month,
|
||||
# NOTE: will be generated for each month. The tuple for each month will be appended to a main list,
|
||||
# NOTE: namely monthly_averages_list. The monthly_averages_list will be returned at the end of the function.
|
||||
|
||||
def get_available_month(data_list):
|
||||
'''get the unique month from the list
|
||||
input:
|
||||
data_list
|
||||
'''
|
||||
return sorted(set([data[0][0:7] for data in data_list]))
|
||||
|
||||
def get_monthly_averages(data_list):
|
||||
'''get the average price by month
|
||||
input:
|
||||
data_list
|
||||
'''
|
||||
month_in_list = get_available_month(data_list)
|
||||
month_average_price = {}
|
||||
monthly_averages_list = data_list
|
||||
|
||||
# get total volume by month
|
||||
for month in month_in_list:
|
||||
filtered_month_transaction = list(filter(lambda row: row[C_DATE][0:7] == month, monthly_averages_list))
|
||||
|
||||
# NOTE: (V1 x C1 + V2 x C2 ...)
|
||||
sum_total_sale_by_month = sum(map(lambda row: row[C_VOLUME] * row[C_ADJ_CLOSE], filtered_month_transaction))
|
||||
|
||||
# NOTE: (V1 + V2 ...)
|
||||
sum_volume_by_month = sum(map(lambda t: t[C_VOLUME], filtered_month_transaction))
|
||||
|
||||
# NOTE: Average price = (V1 x C1 + V2 x C2 ...) / (V1 + V2 ... )
|
||||
month_average_price[month] = sum_total_sale_by_month/sum_volume_by_month
|
||||
|
||||
# NOTE: append to main list -> C_MONTH_AVG_PRICE
|
||||
for data in monthly_averages_list:
|
||||
data.append(month_average_price[data[C_DATE][0:7]])
|
||||
|
||||
return monthly_averages_list
|
||||
|
||||
# NOTE: get_moving_averages(monthly_averages_list)
|
||||
# NOTE: This function has one parameter, namely monthly_averages_list. You need to pass the
|
||||
# NOTE: monthly_averages_list generated by get_monthly_averages() as the argument
|
||||
# NOTE: to this function and then calculate the 5-month exponential moving average (EMA) stock prices.
|
||||
# NOTE: In general, the EMA for a particular month can be calculated by the following formula:
|
||||
# NOTE:
|
||||
# NOTE: EMA = (Monthly average price – previous month’s EMA) x smoothing constant + previous month’s EMA
|
||||
# NOTE:
|
||||
# NOTE: where
|
||||
# NOTE:
|
||||
# NOTE: smoothing constant = 2 / (number of time periods in months + 1)
|
||||
# NOTE:
|
||||
# NOTE: Initial SMA = 20-period sum / 20
|
||||
# NOTE: Multiplier = (2 / (Time periods + 1) ) = (2 / (20 + 1) ) = 0.0952(9.52%)
|
||||
# NOTE: EMA = {Close – EMA(previous day)} x multiplier + EMA(previous day).
|
||||
def get_monthly_average(data_list, month_wanted):
|
||||
'''
|
||||
get monthly average from the list
|
||||
input:
|
||||
data_list: data_list
|
||||
month_wanted: YYYY-MM
|
||||
'''
|
||||
return list(filter(lambda d: d[C_DATE][0:7] == month_wanted, data_list) )[0][C_MONTH_AVG_PRICE]
|
||||
|
||||
|
||||
def get_SMA(data_list, month_to_get_SMA):
|
||||
'''calculate SMA from the beginning(oldest) of the list
|
||||
input:
|
||||
data_list: data_list
|
||||
month_to_get_SMA : number of month to initialize the SMA (i.e. 5)
|
||||
'''
|
||||
sum_of_months = 0
|
||||
|
||||
for month in month_to_get_SMA:
|
||||
sum_of_months = sum_of_months + get_monthly_average(data_list, month)
|
||||
|
||||
return sum_of_months / len(month_to_get_SMA)
|
||||
|
||||
def get_extreme_EMA(ema_list, max_min= 'min', skip_month=0):
|
||||
'''get max/min EMA from the list
|
||||
input:
|
||||
ema_list: month list with ema
|
||||
max_min: max / min selector (default: min)
|
||||
skip_month: month to skip as initialized as SMA (i.e. the first 5 month)
|
||||
'''
|
||||
if (max_min == 'max'):
|
||||
return max(map(lambda r: r[2], ema_list[skip_month:]))
|
||||
|
||||
return min(map(lambda r: r[2], ema_list[skip_month:]))
|
||||
|
||||
def get_month_by_EMA(ema_list, ema_value):
|
||||
'''get months(value) specified by the EMA value wanted
|
||||
input:
|
||||
ema_list: month list with ema
|
||||
ema_value: ema value to select the month (i.e. max EMA)
|
||||
'''
|
||||
return list(map(lambda r: r[0], filter(lambda x: x[2] == ema_value, ema_list)))
|
||||
|
||||
def get_output_content(max_ema, min_ema, max_ema_months, min_ema_months, report_name=""):
|
||||
'''get the output content, return with a formatted string
|
||||
input:
|
||||
max_ema: max ema to report
|
||||
min_ema: min ema to report
|
||||
max_ema_months: month(s) to report with max ema
|
||||
min_ema_months: month(s) to report with min ema
|
||||
'''
|
||||
# reformat to MM-YYYY before out to file
|
||||
reformat_max_ema_months = list(map(lambda m: m.split('-')[1]+'-'+m.split('-')[0] , max_ema_months))
|
||||
reformat_min_ema_months = list(map(lambda m: m.split('-')[1]+'-'+m.split('-')[0] , min_ema_months))
|
||||
|
||||
return '''
|
||||
# The best month for {report_name}:
|
||||
# {best_ema_months}, {best_EMA}
|
||||
|
||||
# The worst month for {report_name}:
|
||||
# {worst_ema_months}, {worst_EMA}
|
||||
'''.format(
|
||||
best_ema_months=','.join(reformat_max_ema_months),
|
||||
best_EMA=round(max_ema, 2),
|
||||
worst_ema_months=','.join(reformat_min_ema_months),
|
||||
worst_EMA=round(min_ema, 2),
|
||||
report_name=report_name).strip()
|
||||
|
||||
|
||||
def get_moving_averages(monthly_averages_list):
|
||||
'''get moving averages
|
||||
input:
|
||||
monthly_averages_list
|
||||
'''
|
||||
month_available = get_available_month(monthly_averages_list)
|
||||
# NOTE: initialize first 0 to 4 SMA
|
||||
monthly_averages_list_w_EMA = [[c, get_monthly_average(monthly_averages_list, c)] for c in month_available]
|
||||
initial_SMA = sum(map(lambda x: x[1], monthly_averages_list_w_EMA[0:5]))/5
|
||||
|
||||
smoothing_constant = 2 / (5 + 1)
|
||||
|
||||
for i in range(0,len(monthly_averages_list_w_EMA)):
|
||||
if (i < 5):
|
||||
# first 5 month were given by SMA
|
||||
monthly_averages_list_w_EMA[i].append( initial_SMA)
|
||||
|
||||
else:
|
||||
month_average_this_month = monthly_averages_list_w_EMA[i][1]
|
||||
EMA_last_month = monthly_averages_list_w_EMA[i-1][2]
|
||||
EMA_this_month = (month_average_this_month - EMA_last_month) * smoothing_constant + EMA_last_month
|
||||
|
||||
monthly_averages_list_w_EMA[i].append( EMA_this_month )
|
||||
|
||||
return monthly_averages_list_w_EMA
|
||||
|
||||
# get input from user
|
||||
csv_filepath = input("Please input a csv filename: ")
|
||||
|
||||
try:
|
||||
# NOTE: get csv file from user
|
||||
csv_filename = csv_filepath
|
||||
txt_filename = csv_filename.split('.csv')[0]+'_output.txt'
|
||||
report_name = os.path.basename(csv_filename).replace('.csv','')
|
||||
|
||||
# NOTE: process file
|
||||
data_list = get_data_list(csv_filename)
|
||||
monthly_average_list = get_monthly_averages(data_list)
|
||||
ema_list = get_moving_averages(monthly_average_list)
|
||||
|
||||
# NOTE: output txt file
|
||||
max_ema = get_extreme_EMA(ema_list,'max', 5)
|
||||
min_ema = get_extreme_EMA(ema_list, 'min',5)
|
||||
best_ema_months = get_month_by_EMA(ema_list, max_ema)
|
||||
worst_ema_months = get_month_by_EMA(ema_list, min_ema)
|
||||
|
||||
output_string = get_output_content(max_ema, min_ema, best_ema_months, worst_ema_months, report_name)
|
||||
|
||||
with open(txt_filename, 'w+') as f_output:
|
||||
f_output.truncate(0)
|
||||
f_output.writelines(output_string)
|
||||
|
||||
print('output wrote '+txt_filename)
|
||||
print('done !')
|
||||
|
||||
except IsADirectoryError as e:
|
||||
# NOTE: if input is a directory, drop here
|
||||
print('sorry the path is a directory')
|
||||
|
||||
except FileNotFoundError as e:
|
||||
# NOTE: if csv file not found, drop here
|
||||
print('sorry cannot find the file wanted')
|
||||
|
||||
except Exception as e:
|
||||
# # cast outside if exception definition not found
|
||||
raise e
|
6
2nd_copy/src/test.sh
Normal file
6
2nd_copy/src/test.sh
Normal file
@@ -0,0 +1,6 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
clear
|
||||
python3 ./main.py
|
7
gitUpdate.bat
Normal file
7
gitUpdate.bat
Normal file
@@ -0,0 +1,7 @@
|
||||
git status .
|
||||
|
||||
@pause
|
||||
|
||||
git add .
|
||||
git commit -m"update hyhl_1022,"
|
||||
start git push
|
372
jupyter/jupyter-helloworld/1st_copy.ipynb
Normal file
372
jupyter/jupyter-helloworld/1st_copy.ipynb
Normal file
@@ -0,0 +1,372 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "83041d33",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%rm -rf google_output.txt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "9b24b4df",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os,sys, csv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "c2b90953",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# column from csv file\n",
|
||||
"# COL_DATE: the day of trading\n",
|
||||
"# COL_OPEN: the stock price at the beginning of the trading day\n",
|
||||
"# COL_HIGH: the highest price the stock achieved on the trading day\n",
|
||||
"# COL_LOW: the lowest price the stock achieved on the trading day\n",
|
||||
"# COL_CLOSE: the stock price at the end of the trading day\n",
|
||||
"# COL_ADJ_Close: the adjusted closing price of the trading day (reflecting the stock’s value after accounting for any corporate actions like dividends, stock splits and new stock offerings)\n",
|
||||
"# COL_VOLUME: the total number of shares were traded on the trading day\n",
|
||||
"COL_DATE=0\n",
|
||||
"COL_OPEN=1\n",
|
||||
"COL_HIGH=2\n",
|
||||
"COL_LOW=3\n",
|
||||
"COL_CLOSE=4\n",
|
||||
"COL_ADJ_CLOSE=5\n",
|
||||
"COL_VOLUME=6\n",
|
||||
"\n",
|
||||
"# append at middle stage\n",
|
||||
"COL_TOTAL_SALE_OF_DAY=7\n",
|
||||
"COL_MONTH_ONLY=8\n",
|
||||
"COL_EMA=9\n",
|
||||
"\n",
|
||||
"# monthly_averages_list\n",
|
||||
"COL_MONTHLY_AVERAGE_PRICE=1\n",
|
||||
"COL_EMA=2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "09a9417f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get_data_list(csv_file_name)\n",
|
||||
"# This function has one parameter, namely csv_file_name. \n",
|
||||
"# When the function is called, you need to pass along a CSV file name which is used inside the function to open and read the CSV\n",
|
||||
"# file. \n",
|
||||
"# After reading each row, it will be split into a list. The list will then be appended into a main\n",
|
||||
"# list (a list of lists), namely data_list. The data_list will be returned at the end of the\n",
|
||||
"# function.\n",
|
||||
"def get_data_list(csv_file_name):\n",
|
||||
" '''read data list from csv file'''\n",
|
||||
" data_list = []\n",
|
||||
" try:\n",
|
||||
" with open(csv_file_name, newline='') as csvfile:\n",
|
||||
" temp = []\n",
|
||||
" temp = csv.reader(csvfile, delimiter=',', quotechar='\"')\n",
|
||||
" data_list = list(temp)\n",
|
||||
" \n",
|
||||
" return data_list\n",
|
||||
" except Exception as e:\n",
|
||||
" print('error during reading csv file ')\n",
|
||||
" print('exitting...')\n",
|
||||
" sys.exit()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "cd616e6e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get_monthly_averages(data_list)\n",
|
||||
"# This function has one parameter, namely data_list. You need to pass the data_list\n",
|
||||
"# generated by the get_data_list() function as the argument to this function and then\n",
|
||||
"# calculate the monthly average prices of the stock. The average monthly prices are calculated in\n",
|
||||
"# the following way. \n",
|
||||
"# \n",
|
||||
"# 1. Suppose the volume and adjusted closing price of a trading day are V1 and C1, respectively. \n",
|
||||
"# 2. The total sale of that day equals V1 x C1. \n",
|
||||
"# 3. Now, suppose the volume and adjusted closing price of another trading day are V2 and C2, respectively. \n",
|
||||
"# 4. The average of these two trading days is the sum of the total sales divided by the total volume:\n",
|
||||
"# \n",
|
||||
"# Average price = (V1 x C1 + V2 x C2) / (V1 + V2)\n",
|
||||
"# \n",
|
||||
"# To average a whole month, you need to \n",
|
||||
"# - add up the total sales (V1 x C1 + V2 x C2 + ... + Vn x Cn) for each day and \n",
|
||||
"# - divide it by the sum of all volumes (V1 + V2 + ... + Vn) where n is the number of trading days in the month.\n",
|
||||
"# A tuple with 2 items, including the date (year and month only) and the average for that month,\n",
|
||||
"# will be generated for each month. The tuple for each month will be appended to a main list,\n",
|
||||
"# namely monthly_averages_list. The monthly_averages_list will be returned at the end of the function.\n",
|
||||
"\n",
|
||||
"def get_monthly_averages(data_list):\n",
|
||||
" '''calculate the monthly average prices of the stock'''\n",
|
||||
"\n",
|
||||
" monthly_averages_list=[]\n",
|
||||
" data_list_data_only = data_list[1:]\n",
|
||||
" month_available = []\n",
|
||||
" \n",
|
||||
" # data cleaning\n",
|
||||
" for i in range(len(data_list_data_only)):\n",
|
||||
" # V1 x C1, calculate the total sale, append into column\n",
|
||||
" data_list_data_only[i].append(float(data_list_data_only[i][COL_VOLUME]) * float(data_list_data_only[i][COL_ADJ_CLOSE]))\n",
|
||||
"\n",
|
||||
" # mark the row by YYYY-MM for easy monthly sum calculation, COL_MONTH_ONLY\n",
|
||||
" data_list_data_only[i].append(data_list_data_only[i][COL_DATE][0:7])\n",
|
||||
"\n",
|
||||
" # get the month in the list YYYY-MM\n",
|
||||
" month_available = set(list(map(lambda x: x[COL_MONTH_ONLY], data_list_data_only)))\n",
|
||||
"\n",
|
||||
" # literate the whole list, calculate the total_sale and total volume\n",
|
||||
" # get the average sale by total_sale / total_volume\n",
|
||||
" for month in sorted(month_available):\n",
|
||||
" filtered_month = list(filter(lambda x: x[COL_MONTH_ONLY] == month, data_list_data_only))\n",
|
||||
" total_sale = sum(list( map(lambda x: x[COL_TOTAL_SALE_OF_DAY], filtered_month)))\n",
|
||||
" total_volume = sum(list( map(lambda x: float(x[COL_VOLUME]), filtered_month)))\n",
|
||||
" monthly_averages_list.append([month, total_sale/total_volume])\n",
|
||||
"\n",
|
||||
" return list(monthly_averages_list)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "dfe29847",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get_moving_averages(monthly_averages_list)\n",
|
||||
"# This function has one parameter, namely monthly_averages_list. You need to pass the\n",
|
||||
"# monthly_averages_list generated by get_monthly_averages() as the argument\n",
|
||||
"# to this function and then calculate the 5-month exponential moving average (EMA) stock prices.\n",
|
||||
"# In general, the EMA for a particular month can be calculated by the following formula:\n",
|
||||
"# \n",
|
||||
"# EMA = (Monthly average price – previous month’s EMA) x smoothing constant + previous month’s EMA\n",
|
||||
"# \n",
|
||||
"# where\n",
|
||||
"# \n",
|
||||
"# smoothing constant = 2 / (number of time periods in months + 1)\n",
|
||||
"# \n",
|
||||
"# Initial SMA = 20-period sum / 20\n",
|
||||
"# Multiplier = (2 / (Time periods + 1) ) = (2 / (20 + 1) ) = 0.0952(9.52%)\n",
|
||||
"# EMA = {Close – EMA(previous day)} x multiplier + EMA(previous day).\n",
|
||||
"def get_moving_averages(monthly_averages_list):\n",
|
||||
" '''\n",
|
||||
" get moving averages from montyly_average_list\n",
|
||||
" input:\n",
|
||||
" [ [YYYY-MM, monthly average price],\n",
|
||||
" [YYYY-MM, monthly average price],\n",
|
||||
" ...]\n",
|
||||
"\n",
|
||||
" output: \n",
|
||||
" [ [YYYY-MM, monthly average price, EMA],\n",
|
||||
" [YYYY-MM, monthly average price, EMA],\n",
|
||||
" ...]\n",
|
||||
" '''\n",
|
||||
"\n",
|
||||
" # by ref, the first 5 month EMA were given by SMA\n",
|
||||
" monthly_averages_list[0].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)\n",
|
||||
" monthly_averages_list[1].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)\n",
|
||||
" monthly_averages_list[2].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)\n",
|
||||
" monthly_averages_list[3].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)\n",
|
||||
" monthly_averages_list[4].append(sum(map(lambda x: x[1], monthly_averages_list[0:5]))/5)\n",
|
||||
"\n",
|
||||
" # smoothing constant = 2 / (number of time periods in months + 1)\n",
|
||||
" smoothing_constant = 2 / (5 + 1)\n",
|
||||
"\n",
|
||||
" # main loop to calculate EMA, start from the 6th month available till the end of the list\n",
|
||||
" for i in range(5, len(monthly_averages_list)):\n",
|
||||
" previous_month_EMA = monthly_averages_list[i-1][2]\n",
|
||||
" Monthly_average_price = monthly_averages_list[i][1]\n",
|
||||
"\n",
|
||||
" EMA = (Monthly_average_price - previous_month_EMA) * smoothing_constant + previous_month_EMA\n",
|
||||
" monthly_averages_list[i].append(EMA)\n",
|
||||
"\n",
|
||||
" return monthly_averages_list\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "c89cbae8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def format_date_string(yyyy_mm):\n",
|
||||
" '''rearrange date string from csv file YYYY-MM => MM-YYYY'''\n",
|
||||
" [yyyy, mm] = yyyy_mm.split('-')\n",
|
||||
" return '-'.join([mm, yyyy])\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "8d646beb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def write_output_file(filename_to_write, monthly_averages_list_w_ema, report_name):\n",
|
||||
" '''get output string from template and write to output file\n",
|
||||
" input:\n",
|
||||
" filename_to_write: txt file name with path to be written to\n",
|
||||
" monthly_averages_list_w_ema: list provided with EMA\n",
|
||||
" report_name: report name to be written to report\n",
|
||||
" '''\n",
|
||||
"\n",
|
||||
" RESULT_TEMPLATE='''\n",
|
||||
"# The best month for ^report_name^:\n",
|
||||
"# ^best_month^, ^best_EMA^\n",
|
||||
"\n",
|
||||
"# The worst month for ^report_name^:\n",
|
||||
"# ^worst_month^, ^worst_EMA^\n",
|
||||
" '''.strip()\n",
|
||||
"\n",
|
||||
" # get the max EMA of the list\n",
|
||||
" best_EMA = max(map(lambda x: x[2], monthly_averages_list_w_ema[5:]))\n",
|
||||
" # get the month(s) by the EMA wanted\n",
|
||||
" best_months = list(map(lambda x: format_date_string(x[0]), filter(lambda x: x[2] == best_EMA, monthly_averages_list_w_ema[5:])))\n",
|
||||
"\n",
|
||||
" # get the min(worst) EMA of the list\n",
|
||||
" worst_EMA = min(map(lambda x: x[2], monthly_averages_list_w_ema[5:]))\n",
|
||||
" # get the month(s) by the EMA wanted\n",
|
||||
" worst_months = list(map(lambda x: format_date_string(x[0]), filter(lambda x: x[2] == worst_EMA, monthly_averages_list_w_ema[5:])))\n",
|
||||
"\n",
|
||||
" # assemble the output string\n",
|
||||
" result_string = RESULT_TEMPLATE\n",
|
||||
" result_string = result_string\\\n",
|
||||
" .replace('^best_month^', ','.join(best_months))\\\n",
|
||||
" .replace('^best_EMA^', str('%.2f' % best_EMA))\\\n",
|
||||
" .replace('^worst_month^', ','.join(worst_months))\\\n",
|
||||
" .replace('^worst_EMA^', str('%.2f' % worst_EMA)) \\\n",
|
||||
" .replace('^report_name^', report_name) \n",
|
||||
"\n",
|
||||
" # write output file\n",
|
||||
" with open(filename_to_write, 'w+') as file_write:\n",
|
||||
" file_write.truncate(0)\n",
|
||||
" file_write.writelines(result_string)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "1917aaef",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def main():\n",
|
||||
" # Main function starts here\n",
|
||||
"\n",
|
||||
" print('start')\n",
|
||||
"\n",
|
||||
" # gather csv file with path from user\n",
|
||||
" input_filename = input(\"Please input a csv filename: \")\n",
|
||||
" \n",
|
||||
" csv_filename = os.path.basename(input_filename)\n",
|
||||
" csv_path = os.path.dirname(input_filename)\n",
|
||||
"\n",
|
||||
" # transform to the output file path by csv file name got\n",
|
||||
" txt_filename = csv_filename.replace('.csv','_output.txt')\n",
|
||||
" if (csv_path !=''):\n",
|
||||
" txt_filename = '/'.join([csv_path, txt_filename])\n",
|
||||
" else:\n",
|
||||
" txt_filename = '/'.join(['.', txt_filename])\n",
|
||||
" \n",
|
||||
" # grep the corp_name from the filename google.csv => google\n",
|
||||
" corp_name = os.path.basename(input_filename).split('.')[0]\n",
|
||||
"\n",
|
||||
" # process the data_list by csv file as stateed in assignment\n",
|
||||
" print(f'processing {csv_filename}')\n",
|
||||
" csv_list=get_data_list(input_filename)\n",
|
||||
" monthly_averages_list = get_monthly_averages(csv_list)\n",
|
||||
" monthly_averages_list_w_EMA = get_moving_averages(monthly_averages_list)\n",
|
||||
"\n",
|
||||
" # write output file\n",
|
||||
" write_output_file(txt_filename, monthly_averages_list_w_EMA, corp_name)\n",
|
||||
" print('wrote to {file} done'.format(file = txt_filename))\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b7d3e814",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"start\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"if __name__ == \"__main__\":\n",
|
||||
" main()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "325de646",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%ls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "de467460",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%cat google_output.txt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "41f834e6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
21
jupyter/jupyter-helloworld/Pipfile
Normal file
21
jupyter/jupyter-helloworld/Pipfile
Normal file
@@ -0,0 +1,21 @@
|
||||
[[source]]
|
||||
url = "https://pypi.org/simple"
|
||||
verify_ssl = true
|
||||
name = "pypi"
|
||||
|
||||
[packages]
|
||||
jupyter = "*"
|
||||
notebook = "*"
|
||||
pandas = "*"
|
||||
quandl = "*"
|
||||
seaborn = "*"
|
||||
sklearn = "*"
|
||||
scikit-learn = "*"
|
||||
pydot = "*"
|
||||
bokeh = "*"
|
||||
jupyter-bokeh = "*"
|
||||
|
||||
[dev-packages]
|
||||
|
||||
[requires]
|
||||
python_version = "3"
|
1403
jupyter/jupyter-helloworld/Pipfile.lock
generated
Normal file
1403
jupyter/jupyter-helloworld/Pipfile.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
14
jupyter/jupyter-helloworld/dev.sh
Normal file
14
jupyter/jupyter-helloworld/dev.sh
Normal file
@@ -0,0 +1,14 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
python -m pip install --upgrade pip
|
||||
|
||||
python -m pip install pipenv
|
||||
|
||||
pipenv sync
|
||||
|
||||
pipenv run \
|
||||
jupyter-notebook \
|
||||
--allow-root \
|
||||
--ip=0.0.0.0
|
1031
jupyter/jupyter-helloworld/google.csv
Normal file
1031
jupyter/jupyter-helloworld/google.csv
Normal file
File diff suppressed because it is too large
Load Diff
100
jupyter/jupyter-helloworld/helloworld-requests.ipynb
Normal file
100
jupyter/jupyter-helloworld/helloworld-requests.ipynb
Normal file
@@ -0,0 +1,100 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "b6bf609f",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Requirement already satisfied: requests in /root/.local/share/virtualenvs/app-4PlAip0Q/lib/python3.10/site-packages (2.28.1)\n",
|
||||
"Requirement already satisfied: charset-normalizer<3,>=2 in /root/.local/share/virtualenvs/app-4PlAip0Q/lib/python3.10/site-packages (from requests) (2.1.1)\n",
|
||||
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /root/.local/share/virtualenvs/app-4PlAip0Q/lib/python3.10/site-packages (from requests) (1.26.13)\n",
|
||||
"Requirement already satisfied: idna<4,>=2.5 in /root/.local/share/virtualenvs/app-4PlAip0Q/lib/python3.10/site-packages (from requests) (3.4)\n",
|
||||
"Requirement already satisfied: certifi>=2017.4.17 in /root/.local/share/virtualenvs/app-4PlAip0Q/lib/python3.10/site-packages (from requests) (2022.9.24)\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install requests"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "9b24b4df",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"r = requests.get('https://www.example.com')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "1cc7f2dc",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"200"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"r.status_code"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "a6bd95b7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Goog.csv\n",
|
||||
"Goog.csv\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"a = input()\n",
|
||||
"print(a)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
55
jupyter/jupyter-helloworld/helloworld.ipynb
Normal file
55
jupyter/jupyter-helloworld/helloworld.ipynb
Normal file
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b6bf609f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install requests"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9b24b4df",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"r = requests.get('https://www.example.com')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1cc7f2dc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"r.status_code"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
15
jupyter/jupyter-helloworld/init.sh
Normal file
15
jupyter/jupyter-helloworld/init.sh
Normal file
@@ -0,0 +1,15 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
pipenv install jupyter
|
||||
pipenv install jupyter notebook
|
||||
|
||||
pipenv install pandas
|
||||
pipenv install quandl
|
||||
|
||||
pipenv install seaborn
|
||||
pipenv install scikit-learn
|
||||
|
||||
# jupyter-notebook
|
||||
|
27
jupyter/jupyter-helloworld/journal.md
Normal file
27
jupyter/jupyter-helloworld/journal.md
Normal file
@@ -0,0 +1,27 @@
|
||||
### to spin up dev environment
|
||||
|
||||
```
|
||||
./start_docker.sh
|
||||
|
||||
// inside docker
|
||||
|
||||
./dev.sh
|
||||
|
||||
open host browser:
|
||||
http://127.0.0.1:8888/?token=98ab80de026fe83fd8e03c8e344b31e7575ec4a084c59f21
|
||||
|
||||
```
|
||||
|
||||
### to develop
|
||||
|
||||
|
||||
start from fresh python docker image
|
||||
|
||||
```
|
||||
./start_docker.sh
|
||||
|
||||
./init.sh
|
||||
```
|
||||
|
||||
|
||||
|
17
jupyter/jupyter-helloworld/start_docker.sh
Normal file
17
jupyter/jupyter-helloworld/start_docker.sh
Normal file
@@ -0,0 +1,17 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -ex
|
||||
|
||||
docker run -it \
|
||||
-v $PWD:/app \
|
||||
-w /app \
|
||||
-v /var/run/docker.sock:/var/run/docker.sock \
|
||||
-v ~/.ssh/id_rsa:/home/node/.ssh/id_rsa:ro \
|
||||
-v ~/.ssh/known_host:/home/node/.ssh/known_hosts:ro \
|
||||
-p 8888:8888 \
|
||||
--rm \
|
||||
python:3.10 \
|
||||
bash
|
||||
|
||||
# -u 1000:1000 \
|
||||
# -e XDG_CACHE_HOME=/app/.cache \
|
8
meta.md
Normal file
8
meta.md
Normal file
@@ -0,0 +1,8 @@
|
||||
---
|
||||
tags: [python, jupyter, INT3075]
|
||||
---
|
||||
|
||||
# hyhl_1022
|
||||
|
||||
[[1st_copy/NOTES]]
|
||||
[[2nd_copy/NOTES]]
|
BIN
notes/L10_de3593a46818cfaeab73dcada2b3b55d.pdf
Normal file
BIN
notes/L10_de3593a46818cfaeab73dcada2b3b55d.pdf
Normal file
Binary file not shown.
BIN
notes/L11_2f280c974cd98e55e99bce9c98bbfe9a.pdf
Normal file
BIN
notes/L11_2f280c974cd98e55e99bce9c98bbfe9a.pdf
Normal file
Binary file not shown.
BIN
notes/L12_2723aaec2763c65c74f58f07f7642d64.pdf
Normal file
BIN
notes/L12_2723aaec2763c65c74f58f07f7642d64.pdf
Normal file
Binary file not shown.
BIN
notes/L1_a7e95e0c362838158c2046f03f053d4e.pdf
Normal file
BIN
notes/L1_a7e95e0c362838158c2046f03f053d4e.pdf
Normal file
Binary file not shown.
BIN
notes/L2_321f978b6dc2b53b5571367ee15eaa55.pdf
Normal file
BIN
notes/L2_321f978b6dc2b53b5571367ee15eaa55.pdf
Normal file
Binary file not shown.
BIN
notes/L3_d51717b8872516d09fdb3b4bb7c838e0.pdf
Normal file
BIN
notes/L3_d51717b8872516d09fdb3b4bb7c838e0.pdf
Normal file
Binary file not shown.
BIN
notes/L4_7ceb50fbff6a5422307dd3019b8ed0f5.pdf
Normal file
BIN
notes/L4_7ceb50fbff6a5422307dd3019b8ed0f5.pdf
Normal file
Binary file not shown.
BIN
notes/L5_133c673a1e8f5762b468b6da6b955f1f.pdf
Normal file
BIN
notes/L5_133c673a1e8f5762b468b6da6b955f1f.pdf
Normal file
Binary file not shown.
BIN
notes/L6_a3eb6c2274b17ddb27e15625ce3dfae9.pdf
Normal file
BIN
notes/L6_a3eb6c2274b17ddb27e15625ce3dfae9.pdf
Normal file
Binary file not shown.
BIN
notes/L7_30fa398bf3a835b43ca63cc6e73be6f4.pdf
Normal file
BIN
notes/L7_30fa398bf3a835b43ca63cc6e73be6f4.pdf
Normal file
Binary file not shown.
BIN
notes/L8_48628cf6525035038e31c9a470438331.pdf
Normal file
BIN
notes/L8_48628cf6525035038e31c9a470438331.pdf
Normal file
Binary file not shown.
BIN
notes/L9_a2c0a3b7282f64d9a7f4bfe3d3355abe.pdf
Normal file
BIN
notes/L9_a2c0a3b7282f64d9a7f4bfe3d3355abe.pdf
Normal file
Binary file not shown.
13
package.json
Normal file
13
package.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"name": "notes",
|
||||
"version": "1.0.0",
|
||||
"description": "",
|
||||
"main": "index.js",
|
||||
"scripts": {
|
||||
"test": "echo \"Error: no test specified\" && exit 1",
|
||||
"gitUpdate": "git add . && git commit -m \"update,\" && git pull && git push"
|
||||
},
|
||||
"keywords": [],
|
||||
"author": "",
|
||||
"license": "ISC"
|
||||
}
|
BIN
screen_capture/HuivQquzDj.png
(Stored with Git LFS)
Normal file
BIN
screen_capture/HuivQquzDj.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
screen_capture/Screenshot from 2022-12-19 15-19-40.png
(Stored with Git LFS)
Normal file
BIN
screen_capture/Screenshot from 2022-12-19 15-19-40.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
screen_capture/steps/google-colab-create-notebook.png
(Stored with Git LFS)
Normal file
BIN
screen_capture/steps/google-colab-create-notebook.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
screen_capture/steps/google-colab-enable-share.png
(Stored with Git LFS)
Normal file
BIN
screen_capture/steps/google-colab-enable-share.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
screen_capture/steps/wa3SkZ5QU1.png
(Stored with Git LFS)
Normal file
BIN
screen_capture/steps/wa3SkZ5QU1.png
(Stored with Git LFS)
Normal file
Binary file not shown.
Reference in New Issue
Block a user